LeetCode 474. 一和零(01背包动态规划)
作者:互联网
1. 题目
在计算机界中,我们总是追求用有限的资源获取最大的收益。
现在,假设你分别支配着 m 个 0 和 n 个 1。另外,还有一个仅包含 0 和 1 字符串的数组。
你的任务是使用给定的 m 个 0 和 n 个 1 ,找到能拼出存在于数组中的字符串的最大数量。每个 0 和 1 至多被使用一次。
注意:
给定 0 和 1 的数量都不会超过 100。
给定字符串数组的长度不会超过 600。
示例 1:
输入: Array = {"10", "0001", "111001", "1", "0"}, m = 5, n = 3
输出: 4
解释: 总共 4 个字符串可以通过 5 个 0 和 3 个 1 拼出,
即 "10","0001","1","0" 。
示例 2:
输入: Array = {"10", "0", "1"}, m = 1, n = 1
输出: 2
解释: 你可以拼出 "10",但之后就没有剩余数字了。
更好的选择是拼出 "0" 和 "1" 。
来源:力扣(LeetCode) 链接:https://leetcode-cn.com/problems/ones-and-zeroes
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
2. 解题
- 0-1背包的变种,两个维度,背包容量为m,n, 求能装下的单词最多
class Solution {
public:
int findMaxForm(vector<string>& strs, int m, int n) {
int i, j, k, one, zero, len = strs.size(), maxcount = 0;
vector<vector<int>> dp(m+1,vector<int>(n+1,-1));
//dp[i][j] 表示使用i个0,j个1 时,对应的最大单词数个数
dp[0][0] = 0;//初始化
for(i = 0; i < len; ++i)//遍历每个单词
{
one = count01(strs[i]);
zero = strs[i].size()-one;
for(j = m-zero; j >= 0; --j)
{ //逆序遍历,+one,zero后新生成的状态不会干扰本次
for(k = n-one; k >= 0; --k)
{
if(dp[j][k] != -1)//存在的状态
{ //转移到的状态 dp[j+zero][k+one]
dp[j+zero][k+one] = max(dp[j+zero][k+one], dp[j][k]+1);
maxcount = max(maxcount, dp[j+zero][k+one]);
}
}
}
}
return maxcount;
}
int count01(string &s)
{
int one = 0;
for(int i = 0; i < s.size(); ++i)
{
if(s[i]=='1') one++;
}
return one;
}
};
标签:10,01,int,strs,zero,474,maxcount,LeetCode,dp 来源: https://blog.csdn.net/qq_21201267/article/details/106256106