学习笔记(29)- 数据集-端到端的对话系统
作者:互联网
只有明确了研究对象、了解目标,才能设计研究思路和方法。
所以我调研了端到端的会话系统的数据集。
豆瓣
百度贴吧
微博
JD Dialog Challenge
ubuntu dialog
DSTC (google)重要
metalWOZ (Microsoft) 重要
MultiWOZ (polyAI)
Wizard of OZ
Amazon
CrossWOZ 新出
A User Simulator for Task-Completion Dialogues
End-to-End Optimization of Task-Oriented Dialogue Model with Deep Reinforcement Learning
Investigation of Language Understanding Impact for Reinforcement Learning Based Dialogue Systems
Adversarial Learning of Task-Oriented Neural Dialog Models
End-to-End Task-Completion Neural Dialogue Systems
The raw conversational data were collected via Amazon Mechanical Turk, with annotations provided by domain experts.
Learning End-to-End Goal-Oriented Dialog
MultiWOZ - A Large-Scale Multi-Domain Wizard-of-Oz Dataset for Task-Oriented Dialogue Modelling
https://arxiv.org/pdf/1810.00278.pdf
A Survey of Natural Language Generation Techniques with a Focus on Dialogue Systems - Past, Present and Future Directions
总结了开放域对话系统的语料、模型结构、评估指标
标签:Dialogue,Task,End,29,笔记,Oriented,Systems,Learning,端到 来源: https://www.cnblogs.com/xuehuiping/p/12420633.html