其他分享
首页 > 其他分享> > 统计推断(一) Hypothesis Test

统计推断(一) Hypothesis Test

作者:互联网

1. Binary Bayesian hypothesis testing

1.0 Problem Setting

1.1 Binary Bayesian hypothesis testing

Theorem: The optimal Bayes’ decision takes the form
L(y)pyH(H1)pyH(H0)H1P0P1C10C00C01C11η L(\mathsf{y}) \triangleq \frac{p_\mathsf{y|H}(\cdot|H_1)}{p_\mathsf{y|H}(\cdot|H_0)} \overset{H_1} \gtreqless \frac{P_0}{P_1} \frac{C_{10}-C_{00}}{C_{01}-C_{11}} \triangleq \eta L(y)≜py∣H​(⋅∣H0​)py∣H​(⋅∣H1​)​⋛H1​​P1​P0​​C01​−C11​C10​−C00​​≜η
Proof:
KaTeX parse error: No such environment: align at position 8: \begin{̲a̲l̲i̲g̲n̲}̲ \varphi(f) &=…
Given yy^*y∗

  • if f(y)=H0f(y^*)=H_0f(y∗)=H0​, E=C00pHy(H0y)+C01pHy(H1y)\mathbb{E}=C_{00}p_{\mathsf{H|y}}(H_0|y^*)+C_{01}p_{\mathsf{H|y}}(H_1|y^*)E=C00​pH∣y​(H0​∣y∗)+C01​pH∣y​(H1​∣y∗)
  • if f(y)=H1f(y^*)=H_1f(y∗)=H1​, E=C10pHy(H0y)+C11pHy(H1y)\mathbb{E}=C_{10}p_{\mathsf{H|y}}(H_0|y^*)+C_{11}p_{\mathsf{H|y}}(H_1|y^*)E=C10​pH∣y​(H0​∣y∗)+C11​pH∣y​(H1​∣y∗)

So
pHy(H1y)pHy(H0y)H1C10C00C01C11 \frac{p_\mathsf{H|y}(H_1|y^*)}{p_\mathsf{H|y}(H_0|y^*)} \overset{H_1} \gtreqless \frac{C_{10}-C_{00}}{C_{01}-C_{11}} pH∣y​(H0​∣y∗)pH∣y​(H1​∣y∗)​⋛H1​​C01​−C11​C10​−C00​​
备注:证明过程中,注意贝叶斯检验为确定性检验,因此对于某个确定的 y,f(y)=H1f(y)=H_1f(y)=H1​ 的概率要么为 0 要么为 1。因此对代价函数求期望时,把 H 看作是随机变量,而把 f(y)f(y)f(y) 看作是确定的值来分类讨论

Special cases

1.2 Likelyhood Ratio Test

Generally, LRT
L(y)pyH(H1)pyH(H0)H1η L(\mathsf{y}) \triangleq \frac{p_\mathsf{y|H}(\cdot|H_1)}{p_\mathsf{y|H}(\cdot|H_0)} \overset{H_1} \gtreqless \eta L(y)≜py∣H​(⋅∣H0​)py∣H​(⋅∣H1​)​⋛H1​​η

充分统计量

1.3 ROC

性质(重要!)

ROC

2. Non-Bayesian hypo test

Neyman-Pearson criterion

maxH^()PD   s.t.PFα \max_{\hat{H}(\cdot)}P_D \ \ \ s.t. P_F\le \alpha H^(⋅)max​PD​   s.t.PF​≤α

Theorem(Neyman-Pearson Lemma):NP 准则的最优解由 LRT 得到,其中 η\etaη 由以下公式得到
PF=P(L(y)ηH=H0)=α P_F=P(L(y)\ge\eta | \mathsf{H}=H_0) = \alpha PF​=P(L(y)≥η∣H=H0​)=α
Proof
proof

物理直观:同一个 PFP_FPF​ 时 LRT 的 PDP_DPD​ 最大。物理直观来看,LRT 中判决为 H1 的区域中 p(yH1)p(yH0)\frac{p(y|H_1)}{p(y|H_0)}p(y∣H0​)p(y∣H1​)​ 都尽可能大,因此 PFP_FPF​ 相同时 PDP_DPD​ 可最大化

备注:NP 准则最优解为 LRT,原因是

  • 同一个 PFP_FPF​ 时, LRT 的 PDP_DPD​ 最大
  • LRT 取不同的 η\etaη 时,PFP_FPF​ 越大,则 PDP_DPD​ 也越大,即 ROC 曲线单调不减

3. Randomized test

3.1 Decision rule

3.2 Proposition

  1. Bayesian case: cannot achieve a lower Bayes’ risk than the optimum LRT

    Proof: Risk for each y is linear in pHy(H0y)p_{\mathrm{H} | \mathbf{y}}\left(H_{0} | \mathbf{y}\right)pH∣y​(H0​∣y), so the minima is achieved at 0 or 1, which degenerate to deterministic decision
    KaTeX parse error: No such environment: align at position 8: \begin{̲a̲l̲i̲g̲n̲}̲ \varphi(\mathb…

  2. Neyman-Pearson case:

    1. continuous-valued: For a given PFP_FPF​ constraint, randomized test cannot achieve a larger PDP_DPD​ than optimum LRT
    2. discrete-valued: For a given PFP_FPF​ constraint, randomized test can achieve a larger PDP_DPD​ than optimum LRT. Furthermore, the optimum rand test corresponds to simple time-sharing between the two LRTs nearby

3.3 Efficient frontier

Boundary of region of achievable (PD,PF)(P_D,P_F)(PD​,PF​) operation points

Facts

efficient frontier

4. Minmax hypo testing

prior: unknown, cost fun: known

4.1 Decision rule

Bonennult 发布了37 篇原创文章 · 获赞 27 · 访问量 2万+ 私信 关注

标签:min,max,H0,H1,varphi,Hypothesis,推断,Test,hat
来源: https://blog.csdn.net/weixin_41024483/article/details/104165225