其他分享
首页 > 其他分享> > 斐波那契F(n+1)*F(n-1) - F(n^2) =(-1)^n的证明

斐波那契F(n+1)*F(n-1) - F(n^2) =(-1)^n的证明

作者:互联网

证法一:

A=1+52A=\frac{1+\sqrt{5}}{2}A=21+5​​,B=152B=\frac{1-\sqrt{5}}{2}B=21−5​​

由斐波那契数列的通项公式F(n)=An+Bn5F(n)=\frac{A^n+B^n}{\sqrt{5}}F(n)=5​An+Bn​可得

F(n+1)F(n1)=15(An+1+Bn+1)(An1+Bn1)F(n+1)F(n-1)= \frac{1}{5}(A^{n+1}+B^{n+1})(A^{n-1}+B^{n-1})F(n+1)F(n−1)=51​(An+1+Bn+1)(An−1+Bn−1)

F(n)2=15(An+Bn)2F(n)^2=\frac{1}{5}(A^n+B^n)^2F(n)2=51​(An+Bn)2

证明:

F(n+1)F(n1)F(n)2F(n+1)F(n-1)-F(n)^2F(n+1)F(n−1)−F(n)2

=15(2AnBnAn+1Bn1An1Bn+1)=-\frac{1}{5}(2A^nB^n-A^{n+1}B^{n-1}-A^{n-1}B^{n+1})=−51​(2AnBn−An+1Bn−1−An−1Bn+1)

=15[AnBn1(BA)An1Bn(AB)]=-\frac{1}{5}[A^nB^{n-1}(B-A)-A^{n-1}B^n(A-B)]=−51​[AnBn−1(B−A)−An−1Bn(A−B)]

=15(AB)(AnBn1+AnBn)=\frac{1}{5}(A-B)(A^nB^{n-1}+A^nB^n)=51​(A−B)(AnBn−1+AnBn)

=15(A+B)(AB)An1Bn1=\frac{1}{5}(A+B)(A-B)A^{n-1}B^{n-1}=51​(A+B)(A−B)An−1Bn−1

=151(1)((15)(1+5)22)n1=\frac{1}{5}*1*(-1)*(\frac{(1-\sqrt{5})*(1+\sqrt{5})}{2*2})^{n-1}=51​∗1∗(−1)∗(2∗2(1−5​)∗(1+5​)​)n−1

=(1)(1)n1=(-1)*(-1)^{n-1}=(−1)∗(−1)n−1

=(1)n=(-1)^n=(−1)n

证法二:

在这里插入图片描述

樱殇 发布了5 篇原创文章 · 获赞 21 · 访问量 4万+ 私信 关注

标签:frac,AnBn,Bn,51,证明,斐波,15,那契,1Bn
来源: https://blog.csdn.net/qq_43134194/article/details/104056662