大数据之路Week10_day01 (通过直接创建Hfile文件的方式往Hbase中插入数据)
作者:互联网
package com.wyh.parctise; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.hbase.HBaseConfiguration; import org.apache.hadoop.hbase.KeyValue; import org.apache.hadoop.hbase.client.HTable; import org.apache.hadoop.hbase.io.ImmutableBytesWritable; import org.apache.hadoop.hbase.mapreduce.HFileOutputFormat2; import org.apache.hadoop.hbase.mapreduce.KeyValueSortReducer; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import java.io.IOException; public class HDFStoHFile { /** * 编写map段 */ public static class HdfsToHFileMap extends Mapper<LongWritable,Text,ImmutableBytesWritable,KeyValue>{ @Override protected void map(LongWritable k1, Text v1, Context context) throws IOException, InterruptedException { String[] split = v1.toString().split(","); String id = split[0]; //创建输入类型数据 ImmutableBytesWritable key = new ImmutableBytesWritable(id.getBytes()); //创建输出类型 KeyValue name = new KeyValue(id.getBytes(), "info".getBytes(), "name".getBytes(), split[1].getBytes()); KeyValue age = new KeyValue(id.getBytes(), "info".getBytes(), "age".getBytes(), split[2].getBytes()); KeyValue gender = new KeyValue(id.getBytes(), "info".getBytes(), "gender".getBytes(), split[3].getBytes()); KeyValue clazz = new KeyValue(id.getBytes(), "info".getBytes(), "clazz".getBytes(), split[4].getBytes()); //写入到磁盘 context.write(key,name); context.write(key,age); context.write(key,gender); context.write(key,clazz); } } public static void main(String[] args) throws Exception { //创建配置文件实例 Configuration conf = HBaseConfiguration.create(); Job job = Job.getInstance(conf); //创建Job job.setJobName("HDFStoHfile"); job.setJarByClass(HDFStoHFile.class); job.setOutputKeyClass(ImmutableBytesWritable.class); job.setOutputValueClass(KeyValue.class); //设置job的map段 job.setMapperClass(HdfsToHFileMap.class); //设置reduce段,是Hbase给我们写好的一个类 job.setReducerClass(KeyValueSortReducer.class); //创建HTable HTable stu4 = new HTable(conf, "stu4"); //将这个表加入到输出中去 HFileOutputFormat2.configureIncrementalLoad(job,stu4); //设置HDFS文件的输入路径 FileInputFormat.addInputPath(job,new Path("/data/students.txt")); FileOutputFormat.setOutputPath(job,new Path("/data/hfile1")); //将其关闭 job.waitForCompletion(true); } }
前提:现在Hbase中创建好表和原本HDFS中存在数据
2、将产生的Hfile在hbase中添加索引
package com.wyh.parctise; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.hbase.client.HTable; import org.apache.hadoop.hbase.mapreduce.LoadIncrementalHFiles; public class LoadHfileToHbase { public static void main(String[] args) throws Exception { Configuration conf = new Configuration(); conf.set("hbase.zookeeper.quorum", "testmaster:2181,testnode1:2181.testnode2:2181,testnode3:2181"); HTable stu4 = new HTable(conf, "stu4"); LoadIncrementalHFiles loadIncrementalHFiles = new LoadIncrementalHFiles(conf); loadIncrementalHFiles.doBulkLoad(new Path("/data/hfile1"),stu4); } }
注意:两个执行方式都是将其打包,注意使用整个项目进行打包,不然在Hadoop的环境中没有添加Hbase的依赖会报错,在pom.xml中添加如下代码(这里不是依赖)
<build> <plugins> <!-- compiler插件, 设定JDK版本 --> <plugin> <groupId>org.apache.maven.plugins</groupId> <artifactId>maven-compiler-plugin</artifactId> <version>2.3.2</version> <configuration> <encoding>UTF-8</encoding> <source>1.8</source> <target>1.8</target> <showWarnings>true</showWarnings> </configuration> </plugin> <!-- 带依赖jar 插件--> <plugin> <artifactId>maven-assembly-plugin</artifactId> <configuration> <descriptorRefs> <descriptorRef>jar-with-dependencies</descriptorRef> </descriptorRefs> </configuration> <executions> <execution> <id>make-assembly</id> <phase>package</phase> <goals> <goal>single</goal> </goals> </execution> </executions> </plugin> </plugins> </build>
在将项目打包,在hadoop的环境中,指定类名进行运行。
标签:Week10,day01,hadoop,new,org,apache,import,Hbase,getBytes 来源: https://www.cnblogs.com/wyh-study/p/12168911.html