其他分享
首页 > 其他分享> > 通过三条直线求出围成三角形的面积

通过三条直线求出围成三角形的面积

作者:互联网

背景

众所周知,三角形是三条相交的直线围成的图形,就像这样:

 

这篇博客的灵感和上一篇一样,同样是来自于初二一次函数的常考题型:一直一条直线,求出它与x轴和y轴围成三角形的面积。

这个问题是很好解决的,只需要将 x=0 和 y=0 代入直线的解析式,算出与坐标轴的交点坐标A和B。因为两条坐标轴相互垂直,两个交点离原点的距离就是两条直角边的长,再根据三角形面积公式,就可以求出三角形的面积。 

 

直到,我又看到了另一道题,要通过两条直线求它们与坐标轴围成的三角形的面积。

解决这个问题,要求出两条直线的交点。可以通过方程求出,然后再求出它们与坐标轴的交点,这样一来,我们就成功得到了底和高。

于是,我干脆继续拓展,通过三条直线确定围成三角形的面积,就有了这个我搞了大半个月的项目和一直咕咕的博客。

大致思路

后两条更直观一点,就是这样:

 

 

 

 

 

推导过程

先求交点

设两条直线的斜率和截距分别为:k1,b1, k2, b2

可得方程:k1*x+b1=k2*x+b2

通过简单的移项可得:

再通过将x带入到其中一个函数中求得y

 

 以此类推,求出三个交点的坐标。

求长方形面积

(横坐标值最大的点的横坐标值-横坐标值最小的点的横坐标值)*(纵坐标值最大的点的纵坐标值-纵坐标值最小的点的纵坐标值)

说白了就是找出最靠上的点和最靠下的点,最靠左的点与最靠右的点,然后算出长方形的长和宽。

求小三角形的面积

对于每两个交点,都可一确定一个以这条边为斜边的直角三角形的面积。

两个点的横坐标的差的绝对值和纵坐标的差的绝对值,就是这个三角形的两条直角边的长度,再根据公式求出面积。

求大三角形的面积

长方形面积 - 三个小三角形面积之和

局限性&解决办法

这种方法非常的简单易懂,但是对于钝角三角形并不适用,就比如这个:

 

解决这个问题也比较简单:当你知道两个点的坐标时,就可以利用勾股定理算出它们的距离,也就是三角形的边长,再套用海伦公式,就可以算出来面积

但是我还没有搞懂海伦公式,再说哪个出题的会出这么难且geliao的题啊。。

 

 等我证出来了海伦公式在搞这个吧。。

 

代码

 

#include <iostream>
#include <cstdio>
using namespace std;

struct fenshu{
    int fz, fm;
};
struct fenshu k[4], b[4], x12, y12, x23, y23, x13, y13, xmax, ymax, xmin, ymin;
int tp;

int gcd(int a, int b){
    if(b==0) return a;
    return gcd(b, a%b);
}
fenshu build(int a, int b){
    fenshu fs;
    int gc=gcd(a, b);
    fs.fz=a/gc; fs.fm=b/gc;
    if(fs.fm<0){
        fs.fz=-fs.fz;
        fs.fm=-fs.fm;
    }
    return fs;
}
fenshu add(fenshu a, fenshu b){
    return build(a.fz*b.fm+b.fz*a.fm, a.fm*b.fm);
}
fenshu sub(fenshu a, fenshu b){
    return build(a.fz*b.fm-b.fz*a.fm, a.fm*b.fm);
}
fenshu multi(fenshu a, fenshu b){
    return build(a.fz*b.fz, a.fm*b.fm);
}
fenshu divi(fenshu a, fenshu b){
    return build(a.fz*b.fm, a.fm*b.fz);
}
int cmp(fenshu a, fenshu b){
    if(a.fz*b.fm>b.fz*a.fm){
        return 1;
    }
    else if(a.fz*b.fm==b.fz*a.fm){
        return 0;
    }
    else{
        return -1;
    }
}
fenshu abs(fenshu a){
    if(a.fz<0) a.fz=-a.fz;
    return a;
}

int main(){
    
    freopen("data.in", "r", stdin);

    for(int i=1; i<=3; i++){
//        printf("输入函数%d的斜率和截距:", i);
        scanf("%d", &tp);
        if(tp==0){
            scanf("%d", &k[i].fz);
            k[i].fm=1;
        }
        else{
            scanf("%d/%d", &k[i].fz, &k[i].fm);
        }
        scanf("%d", &tp);
        if(tp==0){
            scanf("%d", &b[i].fz);
            b[i].fm=1;
        }
        else{
            scanf("%d/%d", &b[i].fz, &b[i].fm);
        }
    }
/*    for(int i=0; i<3; i++){
        printf("%d/%d %d/%d\n", k[i].fz, k[i].fm, b[i].fz, b[i].fm);
    }*/

    x12=divi(sub(b[2], b[1]), sub(k[1], k[2]));
    xmax=x12; xmin=x12;
    x23=divi(sub(b[3], b[2]), sub(k[2], k[3]));
    xmax=(cmp(xmax, x23)<0?x23:xmax);
    xmin=(cmp(xmin, x23)>0?x23:xmin);
    x13=divi(sub(b[3], b[1]), sub(k[1], k[3]));
    xmax=(cmp(xmax, x13)<0?x13:xmax);
    xmin=(cmp(xmin, x13)>0?x13:xmin);

    y12=add(multi(k[1], x12), b[1]);
    ymax=y12; ymin=y12;
    y23=add(multi(k[2], x23), b[2]);
    ymax=(cmp(ymax, y23)<0?y23:ymax);
    ymin=(cmp(ymin, y23)>0?y23:ymin);
    y13=add(multi(k[3], x13), b[3]);
    ymax=(cmp(ymax, y13)<0?y13:ymax);
    ymin=(cmp(ymin, y13)>0?y13:ymin);

/*    printf("xmax:%d/%d\n", xmax.fz, xmax.fm);
    printf("xmin:%d/%d\n", xmin.fz, xmin.fm);
    printf("ymax:%d/%d\n", ymax.fz, ymax.fm);
    printf("ymin:%d/%d\n", ymin.fz, ymin.fm); */

    fenshu TwoFirst, Srect, S1213, S1323, S1223, Stri;
    TwoFirst.fz=2; TwoFirst.fm=1;
    Srect=multi(sub(xmax, xmin), sub(ymax, ymin));
    S1213=divi(multi(abs(sub(x12, x13)), abs(sub(y12, y13))), TwoFirst);
    S1323=divi(multi(abs(sub(x13, x23)), abs(sub(y13, y23))), TwoFirst);
    S1223=divi(multi(abs(sub(x12, x23)), abs(sub(y12, y23))), TwoFirst);
    Stri=sub(Srect, add(S1213, add(S1323, S1223)));

    if(Stri.fm==1){
        printf("%d\n", Stri.fz);
    }
    else{
        printf("%d/%d\n", Stri.fz, Stri.fm);
    }

    return 0;
}

标签:sub,fz,围成,三条,三角形,ymin,fm,ymax
来源: https://www.cnblogs.com/dong628/p/12077702.html