其他分享
首页 > 其他分享> > UVA10559 方块消除 Blocks 题解

UVA10559 方块消除 Blocks 题解

作者:互联网

设g[i][j][k]为消去区间[i,j]中的方块,只留下k个与a[i]颜色相同的方块的最大价值,f[i][j]为将[i,j]中所有方块消去的价值,转移自己yy一下即可。
为什么这样是对的?因为对于一段区间[i,j]一定存在一种最优方案使得i位置上的方块被最后一次消去,确定了最后一次消去的那k个方块的位置就可以把问题转换成若干个子区间上的子问题来解决。
复杂度是\(O(n^4)\)的,但是能过。

具体见代码:

#include<bits/stdc++.h>
using namespace std;
#define N 207
#define ll long long
int g[N][N][N],f[N][N];
int last[N][N],a[N];
int main()
{
    int n,t;
    scanf("%d",&t);
    for(int o=1;o<=t;o++)
    {
    scanf("%d",&n);
    for(int i=1;i<=n;i++)
        scanf("%d",&a[i]);
    memset(g,-0x3f,sizeof(g));
    memset(f,0,sizeof(f));
    for( int i=1;i<=n;i++)
    {
        memcpy(last[i],last[i-1],sizeof(last[i]));
        last[i][a[i-1]]=i-1;
    }   
    for(int i=n;i>=1;i--)
        for(int j=i;j<=n;j++)
        {
        f[i][j]=max((g[i][j][1]=f[i+1][j])+1,f[i][j]);
        for(int k=2;k<=n;k++)
        {
            int p=a[j]==a[i]?j:last[j][a[i]];
            while(p!=i&&g[i][p-1][k-1]!=g[0][0][0])
            {
            g[i][j][k]=max(g[i][j][k],g[i][p-1][k-1]+f[p+1][j]);
            p=last[p][a[i]];
            }
            f[i][j]=max(f[i][j],g[i][j][k]+k*k);
        }
        }
    printf("Case %d: %d\n",o,f[1][n]);
    }
    return 0;
}
            

标签:消去,Blocks,int,题解,long,区间,UVA10559,方块,define
来源: https://www.cnblogs.com/lishuyu2003/p/11728383.html