大数模板
作者:互联网
class BigNum {
public:
static const int MOD = 100000000;
static const int BIT = 8, SIZE = 105;
mutable int n,o;
long long u[SIZE];
BigNum(){}
BigNum(const string& s){
memset(this,0,sizeof(BigNum));
int num=0,cnt=1;
for(int i=s.size()-1;~i;i--){
if(s[i]=='-') o^=1;
if(s[i]>='0' && s[i]<='9'){
num+=(s[i]-'0')*cnt;
cnt*=10;
if(cnt==MOD) u[n++]=num,num=0,cnt=1;
}
}
if(!n || cnt>=10) u[n++]=num;
if(!u[0] && n==1) o=0;
}
BigNum(long long x){
memset(this,0,sizeof(BigNum));
if(x<0) o=1,x=-x;
do u[n++]=x%MOD; while(x/=MOD);
}
operator string() const {
static char s[SIZE*BIT+10];
char* c=s+sprintf(s,"%s%d",o?"-":"",int(u[n-1]));
for(int i=n-2;~i;i--) c+=sprintf(c,"%0*d",BIT,int(u[i]));
return s;
}
int operator [](int pos) const {
static int e[BIT]={1};
for(static int i=1;i<BIT;i++) e[i]=e[i-1]*10;
return u[pos/BIT]/e[pos%BIT]%10;
}
int length() const {
int ret=(n-1)*BIT+1;
for(int x=u[n-1]/10;x;x/=10) ret++;
return ret;
}
friend int cmp(const BigNum& l, const BigNum& r){
if(l.o!=r.o) return (l.o?-1:1);
if(l.n!=r.n) return (l.o?-1:1)*(l.n-r.n);
for(int i=l.n-1;~i;i--) if(l.u[i]-r.u[i])
return (l.o?-1:1)*(l.u[i]-r.u[i]);
return 0;
}
// 运算符
bool operator < (const BigNum& r) const {return cmp(*this,r)<0;}
bool operator > (const BigNum& r) const {return cmp(*this,r)>0;}
bool operator <=(const BigNum& r) const {return cmp(*this,r)<=0;}
bool operator >=(const BigNum& r) const {return cmp(*this,r)>=0;}
bool operator ==(const BigNum& r) const {return cmp(*this,r)==0;}
bool operator !=(const BigNum& r) const {return cmp(*this,r)!=0;}
BigNum operator +(const BigNum& r) const {return BigNum(*this)+=r;}
BigNum operator -(const BigNum& r) const {return BigNum(*this)-=r;}
BigNum operator *(int x) const {return BigNum(*this)*=x;}
BigNum operator /(int x) const {return BigNum(*this)/=x;}
BigNum& operator *=(const BigNum& r){return *this=*this*r;}
BigNum& operator /=(const BigNum& r){return *this=*this/r;}
BigNum& operator %=(const BigNum& r){return *this=*this%r;}
BigNum& operator %=(int x){return *this=*this%x;}
BigNum operator -() const {
BigNum s=*this;
if(s.u[0] || s.n>=2) s.o^=1;
return s;
}
BigNum& operator +=(const BigNum& r){
if(r.n==1 && !r.u[0]) return *this;
if(r.o^o) return r.o^=1,*this-=r,r.o^=1,*this;
if(r.n>n) n=r.n;
for(int i=0;i<r.n;i++) u[i]+=r.u[i];
for(int i=0;i<n;i++) if(u[i]>=MOD) u[i+1]++,u[i]-=MOD;
if(u[n]) n++;
return *this;
}
BigNum& operator -=(const BigNum& r){
if(r.n==1 && !r.u[0]) return *this;
if(r.o^o) return r.o^=1,*this+=r,r.o^=1,*this;
if(cmp(*this,r)*(r.o?-1:1)<0){
o^=1,n=r.n;
for(int i=0;i<r.n;i++) u[i]=r.u[i]-u[i];
}else{
for(int i=0;i<r.n;i++) u[i]=u[i]-r.u[i];
}
for(int i=0;i<n;i++) if(u[i]<0) u[i+1]--,u[i]+=MOD;
while(!u[n-1] && n>=2) --n;
if(!u[0] && n==1) o=0;
return *this;
}
BigNum operator *(const BigNum& r) const {
BigNum s=0;
if(!u[n-1] || !r.u[r.n-1]) return s;
s.n=r.n+n-1;
s.o=r.o^o;
for(int i=0;i<n;i++) for(int j=0;j<r.n;j++)
s.u[i+j]+=u[i]*r.u[j];
for(int i=0;i<s.n;i++) if(s.u[i]>=MOD){
s.u[i+1]+=s.u[i]/MOD;
s.u[i]%=MOD;
if(i==s.n-1) s.n++;
}
return s;
}
BigNum operator /(const BigNum& r) const {
BigNum e[35],s=0,c=0;
int m=0,ro=r.o,lo=o;
r.o^=ro,o^=lo;
for(e[m]=r;MOD>>++m;e[m]=e[m-1]+e[m-1]);
for(int i=n-1;~i;i--){
int tag=0;
(s*=MOD)+=u[i];
for(int x=m-1;~x;x--) if(s>=e[x]) s-=e[x],tag|=1<<x;
(c*=MOD)+=tag;
}
r.o^=ro,o^=lo;
if(c.u[0] || c.n>=2) c.o=r.o^o;
return c;
}
BigNum operator %(const BigNum& r) const {
BigNum e[35],s=0;
int m=0,ro=r.o,lo=o;
r.o^=ro,o^=lo;
for(e[m]=r;MOD>>++m;e[m]=e[m-1]+e[m-1]);
for(int i=n-1;~i;i--){
(s*=MOD)+=u[i];
for(int x=m-1;~x;x--) if(s>=e[x]) s-=e[x];
}
r.o^=ro,o^=lo;
if(s.u[0] || s.n>=2) s.o=o;
return s;
}
BigNum& operator *=(int x){
if(!x) return *this=0;
if(x<0) o^=1,x=-x;
for(int i=0;i<n;i++) u[i]*=x;
for(int i=0;i<n;i++) if(u[i]>=MOD){
u[i+1]+=u[i]/MOD;
u[i]%=MOD;
if(i==n-1) n++;
}
if(!u[0] && n==1) o=0;
return *this;
}
BigNum& operator /=(int x){
if(x<0) o^=1,x=-x;
for(int i=n-1;i;u[i--]/=x) u[i-1]+=u[i]%x*MOD;
for(u[0]/=x;n>=2;n--) if(u[n-1]) break;
if(!u[0] && n==1) o=0;
return *this;
}
int operator %(int x) const {
long long c=0;
for(int i=n-1;~i;i--) c=(c*MOD+u[i])%x;
return (1-o-o)*int(c);
}
};
BigNum gcd(BigNum x,BigNum y)
{
while(y!=BigNum(0))swap(x%=y,y);
return x;
}
标签:return,大数,int,模板,operator,const,BigNum,MOD 来源: https://www.cnblogs.com/xyq0220/p/11597513.html