其他分享
首页 > 其他分享> > 如何修复碰撞响应中的圆和矩形重叠?

如何修复碰撞响应中的圆和矩形重叠?

作者:互联网

由于在数字世界中几乎不会发生真正的碰撞,因此我们总会遇到“碰撞”圆与矩形重叠的情况.

如何在不与重叠的矩形完美碰撞的情况下放回圆圈?

假设矩形停止(零速度)并且轴对齐.

我会用a posteriori方法(二维)解决这个问题.

总之,我必须解决t的这个等式:

哪里:

>是一个回答问题的数字:多少帧以前做了
碰撞完美吗?
>是圆的半径.
>是圆的中心
>是它的速度.
>并且是返回x和y坐标的函数
圆与矩形碰撞的点(当圆圈为时)
在位置,即处于与矩形完全碰撞的位置).

最近我解决了圈子之间碰撞的similar problem,但现在我不知道函数A和B的定律.

解决方法:

经过多年的盯着这个问题,从来没有想出一个完美的解决方案,我终于做到了!

它几乎是一个简单的算法,不需要循环和近似.

这是它在更高层次上的工作方式:

>如果从当前点到未来点的路径穿过该平面,则计算每侧的平面的交叉时间.
>检查每侧的象限以进行单侧交叉,返回交叉点.
>确定圆圈碰撞的角落.
>解决当前点,拐角和交叉中心(距离拐角的半径)之间的三角形.
>计算时间,法线和交叉点中心.

现在到了血淋淋的细节!

函数的输入是边界(具有左,上,右,下)和当前点(开始)和未来点(结束).

输出是一个名为Intersection的类,它有x,y,time,nx和ny.

> {x,y}是交叉时间圆的中心.
> time是0到1之间的值,其中0表示开始,1表示结束
> {nx,ny}是法线,用于反映速度以确定圆的新速度

我们从经常使用的缓存变量开始:

float L = bounds.left;
float T = bounds.top;
float R = bounds.right;
float B = bounds.bottom;
float dx = end.x - start.x;
float dy = end.y - start.y;

并计算每一侧平面的交叉时间(如果开始和结束之间的向量通过该平面):

float ltime = Float.MAX_VALUE;
float rtime = Float.MAX_VALUE;
float ttime = Float.MAX_VALUE;
float btime = Float.MAX_VALUE;

if (start.x - radius < L && end.x + radius > L) {
   ltime = ((L - radius) - start.x) / dx;
}
if (start.x + radius > R && end.x - radius < R) {
   rtime = (start.x - (R + radius)) / -dx;
}
if (start.y - radius < T && end.y + radius > T) {
   ttime = ((T - radius) - start.y) / dy;
}
if (start.y + radius > B && end.y - radius < B) {
   btime = (start.y - (B + radius)) / -dy;
}

现在我们试着看它是否严格地是一个侧面交叉点(而不是角落).如果碰撞点位于侧面,则返回交叉点:

if (ltime >= 0.0f && ltime <= 1.0f) {
   float ly = dy * ltime + start.y;
   if (ly >= T && ly <= B) {
      return new Intersection( dx * ltime + start.x, ly, ltime, -1, 0 );
   }
}
else if (rtime >= 0.0f && rtime <= 1.0f) {
   float ry = dy * rtime + start.y;
   if (ry >= T && ry <= B) {
      return new Intersection( dx * rtime + start.x, ry, rtime, 1, 0 );
   }
}

if (ttime >= 0.0f && ttime <= 1.0f) {
   float tx = dx * ttime + start.x;
   if (tx >= L && tx <= R) {
      return new Intersection( tx, dy * ttime + start.y, ttime, 0, -1 );
   }
}
else if (btime >= 0.0f && btime <= 1.0f) {
   float bx = dx * btime + start.x;
   if (bx >= L && bx <= R) {
      return new Intersection( bx, dy * btime + start.y, btime, 0, 1 );
   }
}

我们已经走到了这一步,所以我们知道没有交叉点,或者它与一个角落相撞.我们需要确定角落:

float cornerX = Float.MAX_VALUE;
float cornerY = Float.MAX_VALUE;

if (ltime != Float.MAX_VALUE) {
   cornerX = L;
} else if (rtime != Float.MAX_VALUE) {
   cornerX = R;
}

if (ttime != Float.MAX_VALUE) {
   cornerY = T;
} else if (btime != Float.MAX_VALUE) {
   cornerY = B;
}

// Account for the times where we don't pass over a side but we do hit it's corner
if (cornerX != Float.MAX_VALUE && cornerY == Float.MAX_VALUE) {
   cornerY = (dy > 0.0f ? B : T);
}

if (cornerY != Float.MAX_VALUE && cornerX == Float.MAX_VALUE) {
   cornerX = (dx > 0.0f ? R : L);
}

现在我们有足够的信息来解决三角形.这使用距离公式,找到两个向量之间的角度,以及正弦定律(两次):

double inverseRadius = 1.0 / radius;
double lineLength = Math.sqrt( dx * dx + dy * dy );
double cornerdx = cornerX - start.x;
double cornerdy = cornerY - start.y;
double cornerdist = Math.sqrt( cornerdx * cornerdx + cornerdy * cornerdy );
double innerAngle = Math.acos( (cornerdx * dx + cornerdy * dy) / (lineLength * cornerdist) );
double innerAngleSin = Math.sin( innerAngle );
double angle1Sin = innerAngleSin * cornerdist * inverseRadius;

// The angle is too large, there cannot be an intersection
if (Math.abs( angle1Sin ) > 1.0f) {
   return null;
}

double angle1 = Math.PI - Math.asin( angle1Sin );
double angle2 = Math.PI - innerAngle - angle1;
double intersectionDistance = radius * Math.sin( angle2 ) / innerAngleSin;

现在我们解决了所有方面和角度,我们可以确定时间和其他一切:

// Solve for time
float time = (float)(intersectionDistance / lineLength);

// If time is outside the boundaries, return null. This algorithm can 
// return a negative time which indicates the previous intersection. 
if (time > 1.0f || time < 0.0f) {
   return null;
}

// Solve the intersection and normal
float ix = time * dx + start.x;
float iy = time * dy + start.y;
float nx = (float)((ix - cornerX) * inverseRadius);
float ny = (float)((iy - cornerY) * inverseRadius);

return new Intersection( ix, iy, time, nx, ny );

呜!这很有趣……就效率而言,这有很大的改进空间.您可以尽可能早地重新排序侧交叉检查以进行转义,同时尽可能少地进行计算.

我希望在没有三角函数的情况下有办法做到这一点,但我不得不放弃!

这是我调用它并使用它来计算圆的新位置的示例,使用法线反射和交叉时间来计算反射的大小:

Intersection inter = handleIntersection( bounds, start, end, radius );

if (inter != null) 
{
   // Project Future Position
   float remainingTime = 1.0f - inter.time;
   float dx = end.x - start.x;
   float dy = end.y - start.y;
   float dot = dx * inter.nx + dy * inter.ny;
   float ndx = dx - 2 * dot * inter.nx;
   float ndy = dy - 2 * dot * inter.ny;
   float newx = inter.x + ndx * remainingTime;
   float newy = inter.y + ndy * remainingTime;
   // new circle position = {newx, newy}
 }

我已经在pastebin上发布了完整的代码,其中包含一个完整的交互式示例,您可以在其中绘制起点和终点,并显示时间和矩形的反弹.

如果你想让它立即运行,你必须从my blog下载代码,否则将它粘贴在你自己的Java2D应用程序中.

编辑:
我已经修改了pastebin中的代码以包含碰撞点,并且还进行了一些速度改进.

编辑:
您可以使用该矩形的角度对旋转的矩形进行修改,以使用圆的起点和终点取消旋转矩形.您将执行交叉检查,然后旋转结果点和法线.

编辑:
如果圆的路径的边界体积不与矩形相交,我修改了pastebin上的代码以提前退出.

标签:collision,java,collision-detection,physics,game-physics
来源: https://codeday.me/bug/20190926/1821221.html