HDU 6242 Geometry Problem(计算几何 + 随机化)
作者:互联网
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6242
思路:当 n == 1 时 任取一点 p 作为圆心即可。
n >= 2 && n < 5 时 此时有可能出现所有点共线,所以取任意俩点间中点作为圆的圆心。
n >= 5 保证了有解。所以不可能有所有点共线的情况,随机取三个点在正解圆上的概率是 1/8,还是蛮大的...。
外学了下随机算法的写法....时间种子 time(0)要强制转成int,不然会WA,不造为啥....
AC代码:
1 #include<bits/stdc++.h> 2 using namespace std; 3 const double eps = 1e-4; 4 const double INF = 1e18; 5 const int maxn = 1e5 + 5; 6 int sgn(double x) 7 { 8 if(fabs(x) < eps) return 0; 9 else return x < 0 ? -1 : 1; 10 } 11 struct Point{ 12 double x, y; 13 Point(){} 14 Point(double _x, double _y){ 15 x = _x; y = _y; 16 } 17 void input() 18 { 19 scanf("%lf %lf", &x, &y); 20 } 21 bool operator ==(const Point &b) const{ 22 return sgn(x - b.x) == 0 && sgn(y - b.y) == 0; 23 } 24 bool operator <(const Point &b) const{ 25 return sgn(x - b.x) == 0 ? sgn(y - b.y) < 0 : x < b.x; 26 } 27 Point operator -(const Point &b) const{ 28 return Point(x - b.x, y - b.y); 29 } 30 Point operator +(const Point &b) const{ 31 return Point(x + b.x, y + b.y); 32 } 33 double operator ^(const Point &b) const{ 34 return x*b.y - b.x*y; 35 } 36 double operator *(const Point &b) const{ 37 return x*b.x + y*b.y; 38 } 39 Point operator*(const double &k)const{ 40 return Point(x*k,y*k); 41 } 42 Point operator/(const double &k)const{ 43 return Point(x/k,y/k); 44 } 45 Point rotleft(){ 46 return Point(-y, x); 47 } 48 double distance(Point p) 49 { 50 return hypot(x - p.x,y - p.y); 51 } 52 } p[maxn]; 53 struct Line{ 54 Point s, e; 55 Line(){} 56 Line(Point _s, Point _e){ 57 s = _s, e = _e; 58 } 59 Point crosspoint(Line v){ 60 double a1 = (v.e - v.s) ^ (s - v.s); 61 double a2 = (v.e - v.s) ^ (e - v.s); 62 return Point((s.x*a2-e.x*a1)/(a2-a1),(s.y*a2-e.y*a1)/(a2-a1)); 63 } 64 }; 65 struct circle{ 66 Point p; 67 double r; 68 circle(){} 69 circle(Point a, Point b, Point c){ 70 Line u = Line( (a + b) / 2, ( (a + b) / 2) + ( (b - a).rotleft() )); 71 Line v = Line( (b + c) / 2, ( (b + c) / 2) + ( (c - b).rotleft() )); 72 p = u.crosspoint(v); 73 r = p.distance(a); 74 } 75 int relation(Point b){ 76 double dst = b.distance(p); 77 if(sgn(dst - r)<0) return 2; 78 else if(sgn(dst - r) == 0) return 1; 79 return 0; 80 } 81 }; 82 int main() 83 { 84 int t; 85 scanf("%d",&t); 86 srand((int)time(0)); 87 while(t--) 88 { 89 int n; 90 scanf("%d",&n); 91 for(int i = 0;i < n;i++) p[i].input(); 92 if(n == 1) printf("0.000 0.000 %.6f\n",p[0].distance(Point(0,0))); 93 else if(n >= 2 && n < 5){ 94 Point v = (p[0] + p[1])/2; 95 printf("%.6f %.6f %.6f\n", v.x, v.y, 0.5*p[0].distance(p[1])); 96 } 97 else{ 98 while(1){ 99 int a = rand() % n, b = a, c = a; 100 while(b = rand() % n){ 101 if(b != a) break; 102 } 103 while(c = rand() % n){ 104 if(c != a && c != b) break; 105 } 106 circle C = circle(p[a], p[b], p[c]); 107 int num = 0; 108 for(int i = 0;i < n;i++) 109 { 110 if(C.relation(p[i]) == 1) num++; 111 } 112 if(num >= (n + 1) / 2){ 113 printf("%.6f %.6f %.6f\n",C.p.x ,C.p.y, C.r); 114 break; 115 } 116 } 117 } 118 } 119 return 0; 120 }
标签:HDU,%.,const,6f,Point,Geometry,double,随机化,int 来源: https://www.cnblogs.com/Carered/p/11568666.html