一文搞懂 deconvolution、transposed convolution、sub-pixel or fractional convolution
作者:互联网
目录
博客:blog.shinelee.me | 博客园 | CSDN
写在前面
开篇先上图,图为deconvolution在像素级语义分割中的一种应用,直观感觉deconvolution是一个upsampling的过程,像是convolution的对称过程。
本文将深入deconvolution的细节,并通过如下方式展开:
- 先回答 什么是deconvolution?为什么会有transposed convolutionon、subpixel or fractional convolution这样的名字?
- 再介绍 各种情形下 transposed convolution是如何进行的,并提供一种统一的计算方法。
什么是deconvolution
首先要明确的是,deconvolution并不是个好名字,因为它存在歧义:
- deconvolution最初被定义为“inverse of convolution”或者“inverse filter”或者“解卷积”,是指消除先前滤波作用的方法。比如,我们认为原始图像是清晰的,但是通过透镜观测到的图像却变得模糊,如果假设透镜的作用相当于以某个kernel作用在原始图像上,由此导致图像变得模糊,那么根据模糊的图像估计这个kernel或者根据模糊图像恢复原始清晰图像的过程就叫deconvolution。
- 后来论文Adaptive Deconvolutional Networks for Mid and High Level Feature Learning和Visualizing and Understanding Convolutional Networks又重新定义了deconvolution,实际上与transposed convolution、sub-pixel or fractional convolution指代相同。transposed convolution是一个更好的名字,sub-pixel or fractional convolution可以看成是transposed convolution的一个特例。对一个常规的卷积层而言,前向传播时是convolution,将input feature map映射为output feature map,反向传播时则是transposed convolution,根据output feature map的梯度计算出input feature map的梯度,梯度图的尺寸与feature map的尺寸相同。
本文谈论的是deconvolution的第2个含义,后面统一使用transposed convolution这个名字。
什么是transposed convolution?A guide to convolution arithmetic for deep learning中有这样一段话:
看完好像仍不是很直观,transposed convolution到底对应的是什么操作?等到文章的后面,这个问题的答案会逐渐清晰起来。
下面先以1个例子来对比convolution过程和transposed convolution过程,采用与A guide to convolution arithmetic for deep learning相同的设置:
- 2-D transposed convolutions (\(N=2\))
- square inputs (\(i_1=i_2=i\))
- square kernel size (\(k_1=k_2=k\))
- same strides along both axes (\(s_1=s_2=s\))
- same zero padding along both axes (\(p_1=p_2=p\))
- square outputs (\(o_1=o_2=o\))
若令\(i=4\)、\(s=1\)、\(p=0\)、\(k=3\),输出尺寸\(o=2\),则convolution过程是将\(4\times 4\)的map映射为\(2\times 2\)的map,而transposed convolution过程则是将\(2\times 2\)的map映射为\(4\times 4\)的map,两者的kernel size均为3,如下图所示:
可以看到,convolution过程zero padding的数量与超参数\(p\)一致,但是transposed convolution实际的zero padding的数量为2,为什么会这样?是为了保持连接方式相同,下面具体看一下。
convolution过程
先看convolution过程,连接方式 如下图所示,绿色表示输出,蓝色表示输入,每个绿色块具与9个蓝色块连接。
令卷积核\(\mathbf{w} = \left(\begin{array}{ccc} {w_{0,0}} & {w_{0,1}} & {w_{0,2}} \\ {w_{1,0}} & {w_{1,2}} & {w_{1,2}} \\ {w_{2,0}} & {w_{2,1}} & {w_{2,2}} \end{array}\right)\),为了便于理解,将卷积写成矩阵乘法形式,令\(\mathbf{x}\)为\(4\times 4\)输入矩阵以行优先方式拉成的长度为16的向量,\(\mathbf{y}\)为\(2\times 2\)输出矩阵以同样方式拉成的长度为4的向量,同时将\(\mathbf{w}\)表示成\(4\times 16\)的稀疏矩阵\(\mathbf{C}\),
\[ \mathbf{C} = \left(\begin{array}{cccccccccccccccc}{w_{0,0}} & {w_{0,1}} & {w_{0,2}} & {0} & {w_{1,0}} & {w_{1,1}} & {w_{1,2}} & {0} & {w_{2,0}} & {w_{2,1}} & {w_{2,2}} & {0} & {0} & {0} & {0} & {0} \\ {0} & {w_{0,0}} & {w_{0,1}} & {w_{0,2}} & {0} & {w_{1,0}} & {w_{1,1}} & {w_{1,2}} & {0} & {w_{2,0}} & {w_{2,1}} & {w_{2,2}} & {0} & {0} & {0} & {0} \\ {0} & {0} & {0} & {0} & {w_{0,0}} & {w_{0,1}} & {w_{0,2}} & {0} & {w_{1,0}} & {w_{1,1}} & {w_{1,2}} & {0} & {w_{2,0}} & {w_{2,1}} & {w_{2,2}} & {0} \\ {0} & {0} & {0} & {0} & {0} & {w_{0,0}} & {w_{0,1}} & {w_{0,2}} & {0} & {w_{1,0}} & {w_{1,1}} & {w_{1,2}} & {0} & {w_{2,0}} & {w_{2,1}} & {w_{2,2}}\end{array}\right) \]
则convolution过程可以描述为\(\mathbf{C} \mathbf{x} = \mathbf{y}\),若\(\mathbf{C}_{i,j}=0\)表示\(\mathbf{x}_j\)和\(\mathbf{y}_i\)间没有连接。
transposed convolution过程
再看transposed convolution过程,如何将长度为4的向量\(\mathbf{y}\)映射为长度为16的向量且保持连接方式相同?只需将\(\mathbf{C}\)转置,令\(\mathbf{C}^T \mathbf{y} = \mathbf{x}'\),同样地,\(\mathbf{C}^T_{j,i}=0\)表示\(\mathbf{x}'_j\)和\(\mathbf{y}_i\)间没有连接。
此时,\(\mathbf{C}^T\)对应的卷积操作恰好相当于将kernel中心对称,FULL zero padding,然后卷积,此时,1个蓝色块与9个绿色块连接,且权重与Convolution过程相同
需要注意的是,transposed convolution的kernel与convolution的kernel可以有关,也可以无关,需要看应用在什么场景,
- 在特征可视化、训练阶段的反向传播中应用的transposed convolution,并不是作为一个真正的layer存在于网络中,其kernel与convolution共享(但要经过中心对称后再卷积,相当于上面的 $ \mathbf{C} ^T $)。
- 在图像分割、生成模型、decoder中使用的transposed convolution,是网络中真实的layer,其kernel经初始化后需要通过学习获得(所以卷积核也就无所谓中心对称不对称了)。
- 前向传播为convolution/transposed convolution,则反向传播为transposed convolution/convolution。
在上面举的简化的例子中,我们可以通过分析得知transposed convolution该如何进行,但是,对于更一般情况应该怎么做?
transposed convolution的计算
对于一般情况,只需把握一个宗旨:transposed convolution将output size恢复为input size且保持连接方式相同。
对于convolution过程,我们知道其output map与input map的尺寸关系如下:
\[o=\left\lfloor \frac{i+2p-k}{s} \right\rfloor + 1\]
若要将\(o\)恢复为\(i\),需考虑2种情况,\(\frac{i+2p-k}{s}\)整除以及不整除,先看整除的情况。
整除的情况
如果\(\frac{i+2p-k}{s}\)可以整除,则由上式可得
\[i = so-s+k-2p = [o+(s-1)(o-1)]+(k-2p-1)\]
因为transposed convolution也是卷积,为了符合上面卷积操作尺寸关系的数学形式,可进一步整理成
\[i = \frac{[o+(s-1)(o-1)] + [(k-1)+(k-2p-1)] - k}{1} + 1\]
令\(i'=o+(s-1)(o-1)\)、$p'=\frac{(k-1)+(k-2p-1)}{2} = k-p-1 \(、\)s'=1\(、\)k'=k$,即transposed convolution实际卷积时使用的超参数,可以这样理解:
\(i'=o+(s-1)(o-1)\):convolution的输出为\(o\times o\),每行每列都是\(o\)个元素,有\(o-1\)个间隔,transposed convolution时在每个间隔处插入\(s-1\)个0,整体构成transposed convolution的input map;
$p'=\frac{(k-1)+(k-2p-1)}{2} = k-p-1 $:在上一步input map的基础上再进行padding,考虑convolution常用的几种padding情况:
- VALID:\(p=0\),transposed convolution则需padding \(p'=k-1\),即FULL padding
- SAME:\(p=\frac{k-1}{2}=r\),这里考虑\(k=2r+1\)为奇数的一般情况,此时\(p'=r\),即SAME padding
- FULL:\(p=k-1\),则\(p'=0\),即VALID padding
可见,convolution和transposed convolution的padding也具有某种对称性\(p'+p=k-1\);
\(k'=k\):transposed convolution的kernel size与convolution相同;
- \(s'=1\):transposed convolution的stride均为1,但也可以换个角度理解,如果认为\(o\times o\)相邻元素间的距离为1个像素,那么在间隔处插入\(s-1\)个0后(\(s > 1\)),得到的input map相邻元素间的距离就是亚像素的(sub-pixel),所以此时也可以称之为 sub-pixel or fractional convolution;
\(o'=i=\frac{i'+2p'-k'}{s'}+1\):transposed convolution的输出与convolution的输入具有相同尺寸。
不整除的情况
接下来再看\(\frac{i+2p-k}{s}\)不整除的情况,此时再按上面的方式计算得到的\(o'=\frac{i'+2p'-k'}{s'}+1\)将小于\(i\),小多少呢?不难得出少\(a = [(i+2p-k) \mod s]\),即
\[o'=\frac{i'+2p'-k'}{s'}+1=i-a\]
为了让\(o'=i\),可写成
\[o'= \frac{i'+2p'+a-k'}{s'}+1\]
只需在padding后,在下边和右边再扩展\(a\)行和列0,然后进行卷积即可。注意,因为\(s'=1\),我们可以将\(a\)放在分母也可以放在外面,之所以放在分母,是因为convolution过程中input map下边和右边的\(a\)行或列中的元素可能参与了运算,即与output map间存在连接,所以在transposed convolution时,为了保持同样的连接,最后扩展的\(a\)行和列也要参与卷积,所以放在分母。
至此,再看transposed convolution的各种情况,就很容易推算了,更多例子可参见A guide to convolution arithmetic for deep learning。
总结
最后,总结一下,
- convolution和transposed convolution互为对称过程,存在一个convolution,就存在一个与之对应的transposed convolution,反之亦然;
- convolution是将input size的map映射为output size的map,transposed convolution是将output size的map映射为input size的map——旨在将尺寸恢复;
- 两者均使用卷积操作,为了方便,两者使用同样的stride、padding、kernel size超参数,但实际执行时的操作不同,一般情况下,transposed convolution与convolution实际超参数关系为:\(i'=o+(s-1)(o-1)\)、$p'=\frac{(k-1)+(k-2p-1)}{2} = k-p-1 \(、\)s'=1\(、\)k'=k$。
- 之所以做这样的操作,是为了保证map间的连接方式相同(权重不一定相同),权重的设置需根据应用的场景,可能通过学习得到,也可能与convolution共享(但需要中心对称后再使用)。
参考
- vdumoulin/conv_arithmetic
- A guide to convolution arithmetic for deep learning
- winter1516_lecture13.pdf
- Is the deconvolution layer the same as a convolutional layer?
- What are deconvolutional layers?
标签:transposed,mathbf,convolution,map,卷积,2p,搞懂 来源: https://www.cnblogs.com/shine-lee/p/11559825.html