其他分享
首页 > 其他分享> > 一文搞懂 deconvolution、transposed convolution、sub-­pixel or fractional convolution

一文搞懂 deconvolution、transposed convolution、sub-­pixel or fractional convolution

作者:互联网

目录

博客:blog.shinelee.me | 博客园 | CSDN

写在前面

deconvolution in segmentation

开篇先上图,图为deconvolution在像素级语义分割中的一种应用,直观感觉deconvolution是一个upsampling的过程,像是convolution的对称过程。

本文将深入deconvolution的细节,并通过如下方式展开:

什么是deconvolution

首先要明确的是,deconvolution并不是个好名字,因为它存在歧义:

  1. deconvolution最初被定义为“inverse of convolution”或者“inverse filter”或者“解卷积”,是指消除先前滤波作用的方法。比如,我们认为原始图像是清晰的,但是通过透镜观测到的图像却变得模糊,如果假设透镜的作用相当于以某个kernel作用在原始图像上,由此导致图像变得模糊,那么根据模糊的图像估计这个kernel或者根据模糊图像恢复原始清晰图像的过程就叫deconvolution
  2. 后来论文Adaptive Deconvolutional Networks for Mid and High Level Feature LearningVisualizing and Understanding Convolutional Networks又重新定义了deconvolution,实际上与transposed convolution、sub-pixel or fractional convolution指代相同。transposed convolution是一个更好的名字,sub-pixel or fractional convolution可以看成是transposed convolution的一个特例。对一个常规的卷积层而言,前向传播时是convolution,将input feature map映射为output feature map,反向传播时则是transposed convolution,根据output feature map的梯度计算出input feature map的梯度,梯度图的尺寸与feature map的尺寸相同。

本文谈论的是deconvolution的第2个含义,后面统一使用transposed convolution这个名字。

什么是transposed convolution?A guide to convolution arithmetic for deep learning中有这样一段话:

transposed convolution definition

看完好像仍不是很直观,transposed convolution到底对应的是什么操作?等到文章的后面,这个问题的答案会逐渐清晰起来。

下面先以1个例子来对比convolution过程和transposed convolution过程,采用与A guide to convolution arithmetic for deep learning相同的设置:

若令\(i=4\)、\(s=1\)、\(p=0\)、\(k=3\),输出尺寸\(o=2\),则convolution过程是将\(4\times 4\)的map映射为\(2\times 2\)的map,而transposed convolution过程则是将\(2\times 2\)的map映射为\(4\times 4\)的map,两者的kernel size均为3,如下图所示:

convolution vs transposed convolution

可以看到,convolution过程zero padding的数量与超参数\(p\)一致,但是transposed convolution实际的zero padding的数量为2,为什么会这样?是为了保持连接方式相同,下面具体看一下。

convolution过程

先看convolution过程,连接方式 如下图所示,绿色表示输出,蓝色表示输入,每个绿色块具与9个蓝色块连接。

direct convolution

令卷积核\(\mathbf{w} = \left(\begin{array}{ccc} {w_{0,0}} & {w_{0,1}} & {w_{0,2}} \\ {w_{1,0}} & {w_{1,2}} & {w_{1,2}} \\ {w_{2,0}} & {w_{2,1}} & {w_{2,2}} \end{array}\right)\),为了便于理解,将卷积写成矩阵乘法形式,令\(\mathbf{x}\)为\(4\times 4\)输入矩阵以行优先方式拉成的长度为16的向量,\(\mathbf{y}\)为\(2\times 2\)输出矩阵以同样方式拉成的长度为4的向量,同时将\(\mathbf{w}\)表示成\(4\times 16\)的稀疏矩阵\(\mathbf{C}\),

\[ \mathbf{C} = \left(\begin{array}{cccccccccccccccc}{w_{0,0}} & {w_{0,1}} & {w_{0,2}} & {0} & {w_{1,0}} & {w_{1,1}} & {w_{1,2}} & {0} & {w_{2,0}} & {w_{2,1}} & {w_{2,2}} & {0} & {0} & {0} & {0} & {0} \\ {0} & {w_{0,0}} & {w_{0,1}} & {w_{0,2}} & {0} & {w_{1,0}} & {w_{1,1}} & {w_{1,2}} & {0} & {w_{2,0}} & {w_{2,1}} & {w_{2,2}} & {0} & {0} & {0} & {0} \\ {0} & {0} & {0} & {0} & {w_{0,0}} & {w_{0,1}} & {w_{0,2}} & {0} & {w_{1,0}} & {w_{1,1}} & {w_{1,2}} & {0} & {w_{2,0}} & {w_{2,1}} & {w_{2,2}} & {0} \\ {0} & {0} & {0} & {0} & {0} & {w_{0,0}} & {w_{0,1}} & {w_{0,2}} & {0} & {w_{1,0}} & {w_{1,1}} & {w_{1,2}} & {0} & {w_{2,0}} & {w_{2,1}} & {w_{2,2}}\end{array}\right) \]

则convolution过程可以描述为\(\mathbf{C} \mathbf{x} = \mathbf{y}\),若\(\mathbf{C}_{i,j}=0\)表示\(\mathbf{x}_j\)和\(\mathbf{y}_i\)间没有连接

transposed convolution过程

再看transposed convolution过程,如何将长度为4的向量\(\mathbf{y}\)映射为长度为16的向量且保持连接方式相同?只需将\(\mathbf{C}\)转置,令\(\mathbf{C}^T \mathbf{y} = \mathbf{x}'\),同样地,\(\mathbf{C}^T_{j,i}=0\)表示\(\mathbf{x}'_j\)和\(\mathbf{y}_i\)间没有连接

此时,\(\mathbf{C}^T\)对应的卷积操作恰好相当于将kernel中心对称,FULL zero padding,然后卷积,此时,1个蓝色块与9个绿色块连接,且权重与Convolution过程相同

transposed convolution

需要注意的是,transposed convolution的kernel与convolution的kernel可以有关,也可以无关,需要看应用在什么场景,

在上面举的简化的例子中,我们可以通过分析得知transposed convolution该如何进行,但是,对于更一般情况应该怎么做?

transposed convolution的计算

对于一般情况,只需把握一个宗旨:transposed convolution将output size恢复为input size且保持连接方式相同

对于convolution过程,我们知道其output map与input map的尺寸关系如下:

\[o=\left\lfloor \frac{i+2p-k}{s} \right\rfloor + 1\]

若要将\(o\)恢复为\(i\),需考虑2种情况,\(\frac{i+2p-k}{s}\)整除以及不整除,先看整除的情况。

整除的情况

如果\(\frac{i+2p-k}{s}\)可以整除,则由上式可得

\[i = so-s+k-2p = [o+(s-1)(o-1)]+(k-2p-1)\]

因为transposed convolution也是卷积,为了符合上面卷积操作尺寸关系的数学形式,可进一步整理成

\[i = \frac{[o+(s-1)(o-1)] + [(k-1)+(k-2p-1)] - k}{1} + 1\]

令\(i'=o+(s-1)(o-1)\)、$p'=\frac{(k-1)+(k-2p-1)}{2} = k-p-1 \(、\)s'=1\(、\)k'=k$,即transposed convolution实际卷积时使用的超参数,可以这样理解:

不整除的情况

接下来再看\(\frac{i+2p-k}{s}\)不整除的情况,此时再按上面的方式计算得到的\(o'=\frac{i'+2p'-k'}{s'}+1\)将小于\(i\),小多少呢?不难得出少\(a = [(i+2p-k) \mod s]\),即

\[o'=\frac{i'+2p'-k'}{s'}+1=i-a\]

为了让\(o'=i\),可写成

\[o'= \frac{i'+2p'+a-k'}{s'}+1\]

只需在padding后,在下边和右边再扩展\(a\)行和列0,然后进行卷积即可注意,因为\(s'=1\),我们可以将\(a\)放在分母也可以放在外面,之所以放在分母,是因为convolution过程中input map下边和右边的\(a\)行或列中的元素可能参与了运算,即与output map间存在连接,所以在transposed convolution时,为了保持同样的连接,最后扩展的\(a\)行和列也要参与卷积,所以放在分母。

至此,再看transposed convolution的各种情况,就很容易推算了,更多例子可参见A guide to convolution arithmetic for deep learning

transposed convolution

总结

最后,总结一下,

参考

标签:transposed,mathbf,convolution,map,卷积,2p,搞懂
来源: https://www.cnblogs.com/shine-lee/p/11559825.html