实现有序排列的多空均衡权益策略
作者:互联网
在上一篇文章中(https://www.fmz.com/digest-topic/4187),我们介绍了配对交易策略,并演示了如何利用数据和数学分析来创建和自动化交易策略。多空均衡权益策略是适用于一篮子交易标的的配对交易策略的自然延伸。其特别适用于品种众多且有相互关联性的交易市场,比如数字货币市场和商品期货市场。
基本原则 多空均衡权益策略是同时做多和做空一篮子交易标的。就像配对交易一样,确定哪种投资标的价格便宜,哪种投资标的价格昂贵.不同的是,多空均衡权益策略会将所有投资标的排在一个选股池中,以确定哪些投资标的相对便宜或者昂贵。然后,它将基于排名做多头部前n个投资标的,并且以等金额做空底部n个投资标的(多头头寸的总值=空头头寸的总值)。 还记得我们之前说配对交易是一个市场中立的策略吗?多空均衡权益策略也是如此,因为多头和空头头寸等额确保策略将保持市场中性(不受市场波动影响)。该策略在统计上也很稳健;通过对投资标的进行排名并持有多个头寸,你可以对你的排名模型进行多次开仓,而不仅仅是一次性风险开仓。你纯粹押注的只有你排名方案的质量。 什么是排名方案? 排名方案是可以根据预期的表现为每个投资标的分配优先级的模型。其中的因子可以是价值因子,技术指标,定价模型或上述所有因子的组合。例如,你可以使用动量指标对一系列趋势跟踪投资标的进行排名:预计具有最高势头的投资标的将继续表现良好并获得最高排名; 动量最小的投资标的表现最差,收益率最低。 该策略的成功几乎完全在于所使用的排名方案,即你的排名方案能够将高绩效投资标的与低绩效投资标的分开,更好地实现多空投资标的策略的回报。因此,制定排名方案非常重要。 怎样制定排名方案? 一旦我们确定了排名方案,我们显然希望能够从中获利。我们这样做是通过投入相同数量的资金来做多排名靠前的投资标的,并做空排名底部的投资标的。这确保了策略只会按照排名的质量按比例赚钱,并且将是"市场中立"的。 假设你正在对所有投资标的m进行排名,有n美元投资,并希望持有总共2p(其中m> 2p)的仓位。如果排名rank 1的投资标的预计会表现最差,那么排名为m的投资标的预计将表现最佳:- 你将投资标的排列为:1,......,p这样的位置,做空2/2p美元的投资标的
- 你将投资标的排列为:m-p,......,m这样的位置,做多n/2p美元的投资标的
- 在发明者量化平台搭建我们的研究环境
- 关于如何部署托管者和机器人,请参考我之前的文章:https://www.fmz.com/bbs-topic/4140
- 想购买自己云计算服务器部署托管者的读者,可以参考这篇文章:https://www.fmz.com/bbs-topic/2848
- 关于Anaconda的安装方法,请查看Anaconda官方指南:https://www.anaconda.com/distribution/
- 本文还将用到numpy和pandas这两个目前在Python科学计算方面十分流行且重要的库。以上这些基础工作也可参考我之前的文章,里面有关于如何设置Anaconda环境和numpy和pandas这两个库的介绍,详情请见: https://www.fmz.com/digest-topic/4169
现在我们有因子价值和收益了,我们可以看到如果我们根据因子价值对投资标的进行排名,然后开仓多头和空头头寸会发生什么。
我们的策略是在一篮子投资标的池中做多排名第一的;做空排名第10的。这个策略的回报是:
其结果为:4.172。把钱放在我们的排名模型上,以让其能够从低绩效投资标的中分离高绩效投资标的。在本文接下来的内容中,我们将讨论如何评估排名方案。基于排名的套利赚钱的好处在于它不受市场无序的影响,反而可以利用它。 让我们考虑一个现实世界的例子 我们为标准普尔500指数中不同行业的32只股票加载数据并尝试对它们进行排名。
让我们以一个月时间周期的标准化动量指标作为排名依据
现在我们将分析我们股票的行为,看看我们的股票在市场中如何在我们选择的排名因子中运作。 分析数据 股票行为 我们看看我们选择的一篮子股票在我们的排名模型中是如何表现的。为此,让我们计算所有股票的一周远期回报。然后我们可以看看每个股票的1周前向回报与之前30天动量的相关性。表现出正相关的股票是趋势跟随,表现出负相关的股票是均值回归。
我们所有的股票都在一定程度上均值回归!(显然我们选择的宇宙就是这样运作的)这告诉我们,如果股票在动量分析中得分排名很高,我们应该预计其下周表现不佳。 动量分析得分排序与收益之间的相关性 接下来,我们需要看看我们的排名得分和市场总体的前向回报之间的相关性,即预计回报率的预测与我们的排名因子的关系,较高的相关性等级是否可以预测较差的相对回报,又或者反之亦然?为此,我们计算所有股票的30天的动量和1周远期回报之间的每日相关性。
每日相关性表现的非常嘈杂,但非常轻微(这是预期到的,因为我们说过所有的股票都会均值回归)。我们还要看看1个月前向回报的平均每月相关性。
我们可以看到平均相关性再次略微为负,但每个月也会变化很大。 平均一篮子股票回报率 我们已经计算了从我们的排名中取出的一篮子股票的回报。如果我们对所有股票进行排名然后将它们分成nn组,那么每组的平均收益是多少?第一步是创建一个函数,该函数将给出每月给定的每个篮子的平均回报和排名因子。
我们根据此分数对股票进行排名时计算每个篮子的平均回报。这应该让我们可以了解很长一段时间内他们的关系。
似乎我们能够将高绩效者与低绩效者分开了。 利差(基差)一致性 当然,这些只是平均关系。为了了解这关系是多么一致,以及我们是否愿意进行交易,我们应该随着时间的推移来改变看待它的方法和态度。接下来,我们将查看它们前两年的月度利差(基差)。我们可以看到更多变化,进行进一步的分析以确定这个动量分数是否可以交易。
最后,如果我们做多最后一个篮子并且每个月做空第一个篮子,那么让我们看一下回报(假设每个证券的资本分配相等)
年回报率:5.03% 我们看到,我们有一个非常微弱的排名方案,只能温和地将高绩效股票与低绩效股票区分开来。 此外,这个排名方案没有一致性,每月变化很大。 找到正确的排名方案 要实现多空均衡权益策略,你实际上只需要确定排名方案。之后的一切都是机械的。一旦你有一个多空均衡权益策略,你可以交换不同的排名因子,别的都不用太大的改动。这是一种非常方便的方法,可以快速迭代你的想法,而无需担心每次调整全部代码。 排名方案也可以来自几乎任何模型。它不一定是基于价值的因子模型,它可以是一种机器学习技术,可以提前一个月预测回报并根据该等级进行排名。 排名方案的选择与评估 排名方案是多空均衡权益策略的优势所在,也是最重要的组成部分。选择一个好的排名方案是一个系统的工程,并没有简单的答案。一个很好的起点是选择现有的已知技术,看看你是否可以稍微修改它们以获得更高的回报。 我们将在这里讨论几个起点:
- 克隆和调整:选择一个经常讨论的内容,看看是否可以稍微修改它以获得优势。通常情况下,公开的因子将不再有交易信号,因为它们已完全套利出市场。但是,有时它们会引导你朝着正确的方向前进。
- 定价模型:任何预测未来回报的模型都可能是一个因子,都有潜在的可能用于对你的一篮子交易标的进行排名。你可以采用任何复杂的定价模型并将其转换为排名方案。
- 基于价格的因子(技术指标):基于价格的因子,如我们今天所讨论的,获取有关每种权益的历史价格的信息,并使用它来生成因子价值。例子可能是移动平均指标,动量指标或波动率指标。
- 回归与动量:值得注意的是,有些因子认为价格一旦朝着一个方向发展,就会继续这样做。有些因子恰恰相反。两者都是关于不同时间范围和资产的有效模型,并且研究基础行为是基于动量还是基于回归是很重要的。
- 基本因子(基于价值):这是使用基本价值的组合,如PE,股息等。基本价值包含与公司的现实世界事实相关的信息,因此在许多方面可以比价格更强大。
标签:有序,回报,多空,因子,标的,均衡,排名,我们,策略 来源: https://www.cnblogs.com/fmz-quant/p/11527286.html