其他分享
首页 > 其他分享> > Spark 性能调优:分配资源+调节并行度+广播变量+RDD持久化+Kryo序列化+fastutil+本地化等待时长

Spark 性能调优:分配资源+调节并行度+广播变量+RDD持久化+Kryo序列化+fastutil+本地化等待时长

作者:互联网

一.性能调优之在实际项目中分配更多资源

 

分配更多资源:性能调优的王道,就是增加和分配更多的资源,性能和速度上的提升,是显而易见的;基本上,在一定范围之内,增加资源与性能的提升,是成正比的;写完了一个复杂的spark作业之后,进行性能调优的时候,首先第一步,我觉得,就是要来调节最优的资源配置;在这个基础之上,如果说你的spark作业,能够分配的资源达到了你的能力范围的顶端之后,无法再分配更多的资源了,公司资源有限;那么才是考虑去做后面的这些性能调优的点。

问题:
1、分配哪些资源?
2、在哪里分配这些资源?
3、为什么多分配了这些资源以后,性能会得到提升?

答案:

1、分配哪些资源?

executor、cpu per executor、memory per executor、driver memory

2、在哪里分配这些资源?

在我们在生产环境中,提交spark作业时,用的spark-submit shell脚本,里面调整对应的参数


/usr/local/spark/bin/spark-submit \
--class cn.spark.sparktest.core.WordCountCluster \
--num-executors 3 \ 配置executor的数量
--driver-memory 100m \ 配置driver的内存(影响不大)
--executor-memory 100m \ 配置每个executor的内存大小
--executor-cores 3 \ 配置每个executor的cpu core数量
/usr/local/SparkTest-0.0.1-SNAPSHOT-jar-with-dependencies.jar \


 

3、调节到多大,算是最大呢?

第一种,Spark Standalone,公司集群上,搭建了一套Spark集群,你心里应该清楚每台机器还能够给你使用的,大概有多少内存,多少cpu core;那么,设置的时候,就根据这个实际的情况,去调节每个spark作业的资源分配。比如说你的每台机器能够给你使用4G内存,2个cpu core;20台机器;executor,20;4G内存,2个cpu core,平均每个executor。

第二种,Yarn。资源队列。资源调度。应该去查看,你的spark作业,要提交到的资源队列,大概有多少资源?500G内存,100个cpu core;executor,50;10G内存,2个cpu core,平均每个executor。

一个原则,你能使用的资源有多大,就尽量去调节到最大的大小(executor的数量,几十个到上百个不等;executor内存;executor cpu core)

4、为什么调节了资源以后,性能可以提升?

 

 

 

 

 

二.性能调优之在实际项目中调节并行度

并行度:其实就是指的是,Spark作业中,各个stage的task数量,也就代表了Spark作业的在各个阶段(stage)的并行度。

如果不调节并行度,导致并行度过低,会怎么样?

假设,现在已经在spark-submit脚本里面,给我们的spark作业分配了足够多的资源,比如50个executor,每个executor有10G内存,每个executor有3个cpu core。基本已经达到了集群或者yarn队列的资源上限。

task没有设置,或者设置的很少,比如就设置了,100个task。50个executor,每个executor有3个cpu core,也就是说,你的Application任何一个stage运行的时候,都有总数在150个cpu core,可以并行运行。但是你现在,只有100个task,平均分配一下,每个executor分配到2个task,ok,那么同时在运行的task,只有100个,每个executor只会并行运行2个task。每个executor剩下的一个cpu core,就浪费掉了。

你的资源虽然分配足够了,但是问题是,并行度没有与资源相匹配,导致你分配下去的资源都浪费掉了。

合理的并行度的设置,应该是要设置的足够大,大到可以完全合理的利用你的集群资源;比如上面的例子,总共集群有150个cpu core,可以并行运行150个task。那么就应该将你的Application的并行度,至少设置成150,才能完全有效的利用你的集群资源,让150个task,并行执行;而且task增加到150个以后,即可以同时并行运行,还可以让每个task要处理的数据量变少;比如总共150G的数据要处理,如果是100个task,每个task计算1.5G的数据;现在增加到150个task,可以并行运行,而且每个task主要处理1G的数据就可以。

很简单的道理,只要合理设置并行度,就可以完全充分利用你的集群计算资源,并且减少每个task要处理的数据量,最终,就是提升你的整个Spark作业的性能和运行速度。

 

1、task数量,至少设置成与Spark application的总cpu core数量相同(最理想情况,比如总共150个cpu core,分配了150个task,一起运行,差不多同一时间运行完毕)

2、官方是推荐,task数量,设置成spark application总cpu core数量的2~3倍,比如150个cpu core,基本要设置task数量为300~500;

实际情况,与理想情况不同的,有些task会运行的快一点,比如50s就完了,有些task,可能会慢一点,要1分半才运行完,所以如果你的task数量,刚好设置的跟cpu core数量相同,可能还是会导致资源的浪费,因为,比如150个task,10个先运行完了,剩余140个还在运行,但是这个时候,有10个cpu core就空闲出来了,就导致了浪费。那如果task数量设置成cpu core总数的2~3倍,那么一个task运行完了以后,另一个task马上可以补上来,就尽量让cpu core不要空闲,同时也是尽量提升spark作业运行的效率和速度,提升性能。

3、如何设置一个Spark Application的并行度?
spark.default.parallelism
SparkConf conf = new SparkConf()
.set("spark.default.parallelism", "500")

“重剑无锋”:真正有分量的一些技术和点,其实都是看起来比较平凡,看起来没有那么“炫酷”,但是其实是你每次写完一个spark作业,进入性能调优阶段的时候,应该优先调节的事情,就是这些(大部分时候,可能资源和并行度到位了,spark作业就很快了,几分钟就跑完了)

“炫酷”:数据倾斜(100个spark作业,最多10个会出现真正严重的数据倾斜问题),感冒和发烧,你不能上来就用一些偏方(癌症,用癞蛤蟆熬煮汤药);JVM调优;

 

 

 

三.性能调优之在实际项目中重构RDD架构以及RDD持久化

 

第一,RDD架构重构与优化

尽量去复用RDD,差不多的RDD,可以抽取称为一个共同的RDD,供后面的RDD计算时,反复使用。

第二,公共RDD一定要实现持久化

北方吃饺子,现包现煮。你人来了,要点一盘饺子。馅料+饺子皮+水->包好的饺子,对包好的饺子去煮,煮开了以后,才有你需要的熟的,热腾腾的饺子。

现实生活中,饺子现包现煮,当然是最好的了;但是Spark中,RDD要去“现包现煮”,那就是一场致命的灾难。

对于要多次计算和使用的公共RDD,一定要进行持久化。

持久化,也就是说,将RDD的数据缓存到内存中/磁盘中,(BlockManager),以后无论对这个RDD做多少次计算,那么都是直接取这个RDD的持久化的数据,比如从内存中或者磁盘中,直接提取一份数据。

第三,持久化,是可以进行序列化的

如果正常将数据持久化在内存中,那么可能会导致内存的占用过大,这样的话,也许,会导致OOM内存溢出。

当纯内存无法支撑公共RDD数据完全存放的时候,就优先考虑,使用序列化的方式在纯内存中存储。将RDD的每个partition的数据,序列化成一个大的字节数组,就一个对象;序列化后,大大减少内存的空间占用。

序列化的方式,唯一的缺点就是,在获取数据的时候,需要反序列化。

如果序列化纯内存方式,还是导致OOM,内存溢出;就只能考虑磁盘的方式,内存+磁盘的普通方式(无序列化)。

内存+磁盘,序列化

第四,为了数据的高可靠性,而且内存充足,可以使用双副本机制,进行持久化

持久化的双副本机制,持久化后的一个副本,因为机器宕机了,副本丢了,就还是得重新计算一次;持久化的每个数据单元,存储一份副本,放在其他节点上面;从而进行容错;一个副本丢了,不用重新计算,还可以使用另外一份副本。

这种方式,仅仅针对你的内存资源极度充足

 

 

 

四.性能调优之在实际项目中广播大变量

 

 

 

 

这种默认的,task执行的算子中,使用了外部的变量,每个task都会获取一份变量的副本,有什么缺点呢?在什么情况下,会出现性能上的恶劣的影响呢?

map,本身是不小,存放数据的一个单位是Entry,还有可能会用链表的格式的来存放Entry链条。所以map是比较消耗内存的数据格式。

比如,map是1M。总共,你前面调优都调的特好,资源给的到位,配合着资源,并行度调节的绝对到位,1000个task。大量task的确都在并行运行。

这些task里面都用到了占用1M内存的map,那么首先,map会拷贝1000份副本,通过网络传输到各个task中去,给task使用。总计有1G的数据,会通过网络传输。网络传输的开销,不容乐观啊!!!网络传输,也许就会消耗掉你的spark作业运行的总时间的一小部分。

map副本,传输到了各个task上之后,是要占用内存的。1个map的确不大,1M;1000个map分布在你的集群中,一下子就耗费掉1G的内存。对性能会有什么影响呢?

不必要的内存的消耗和占用,就导致了,你在进行RDD持久化到内存,也许就没法完全在内存中放下;就只能写入磁盘,最后导致后续的操作在磁盘IO上消耗性能;

你的task在创建对象的时候,也许会发现堆内存放不下所有对象,也许就会导致频繁的垃圾回收器的回收,GC。GC的时候,一定是会导致工作线程停止,也就是导致Spark暂停工作那么一点时间。频繁GC的话,对Spark作业的运行的速度会有相当可观的影响。

 

广播变量,初始的时候,就在Drvier上有一份副本。

task在运行的时候,想要使用广播变量中的数据,此时首先会在自己本地的Executor对应的BlockManager中,尝试获取变量副本;如果本地没有,那么就从Driver远程拉取变量副本,并保存在本地的BlockManager中;此后这个executor上的task,都会直接使用本地的BlockManager中的副本。

executor的BlockManager除了从driver上拉取,也可能从其他节点的BlockManager上拉取变量副本,举例越近越好。

 

 

 

举例来说,(虽然是举例,但是基本都是用我们实际在企业中用的生产环境中的配置和经验来说明的)。50个executor,1000个task。一个map,10M。

默认情况下,1000个task,1000份副本。10G的数据,网络传输,在集群中,耗费10G的内存资源。

如果使用了广播变量。50个execurtor,50个副本。500M的数据,网络传输,而且不一定都是从Driver传输到每个节点,还可能是就近从最近的节点的executor的bockmanager上拉取变量副本,网络传输速度大大增加;500M的内存消耗。

10000M,500M,20倍。20倍~以上的网络传输性能消耗的降低;20倍的内存消耗的减少。

对性能的提升和影响,还是很客观的。

虽然说,不一定会对性能产生决定性的作用。比如运行30分钟的spark作业,可能做了广播变量以后,速度快了2分钟,或者5分钟。但是一点一滴的调优,积少成多。最后还是会有效果的。

没有经过任何调优手段的spark作业,16个小时;三板斧下来,就可以到5个小时;然后非常重要的一个调优,影响特别大,shuffle调优,2~3个小时;应用了10个以上的性能调优的技术点,JVM+广播,30分钟。16小时~30分钟。

 

 五.性能调优之在实际项目中使用Kryo序列化

 

 

1.还可以进一步优化,优化这个序列化格式

默认情况下,Spark内部是使用Java的序列化机制,ObjectOutputStream / ObjectInputStream,对象输入输出流机制,来进行序列化

这种默认序列化机制的好处在于,处理起来比较方便;也不需要我们手动去做什么事情,只是,你在算子里面使用的变量,必须是实现Serializable接口的,可序列化即可。

但是缺点在于,默认的序列化机制的效率不高,序列化的速度比较慢;序列化以后的数据,占用的内存空间相对还是比较大。

可以手动进行序列化格式的优化

Spark支持使用Kryo序列化机制。Kryo序列化机制,比默认的Java序列化机制,速度要快,序列化后的数据要更小,大概是Java序列化机制的1/10。

所以Kryo序列化优化以后,可以让网络传输的数据变少;在集群中耗费的内存资源大大减少。

 

在进行stage间的task的shuffle操作时,节点与节点之间的task会互相大量通过网络拉取和传输文件,此时,这些数据既然通过网络传输,也是可能要序列化的,就会使用Kryo

 

2.Kryo序列化机制,一旦启用以后,会生效的几个地方:

1、算子函数中使用到的外部变量,使用Kryo以后:优化网络传输的性能,可以优化集群中内存的占用和消耗
2、持久化RDD,优化内存的占用和消耗;持久化RDD占用的内存越少,task执行的时候,创建的对象,就不至于频繁的占满内存,频繁发生GC。
3、shuffle:可以优化网络传输的性能

 

3.优化步骤

首先第一步,在SparkConf中设置一个属性,spark.serializer,org.apache.spark.serializer.KryoSerializer类;

Kryo之所以没有被作为默认的序列化类库的原因,就要出现了:主要是因为Kryo要求,如果要达到它的最佳性能的话,那么就一定要注册你自定义的类(比如,你的算子函数中使用到了外部自定义类型的对象变量,这时,就要求必须注册你的类,否则Kryo达不到最佳性能)。

第二步,注册你使用到的,需要通过Kryo序列化的,一些自定义类,SparkConf.registerKryoClasses()

项目中的使用:
.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
.registerKryoClasses(new Class[]{CategorySortKey.class})

 

六.性能调优之在实际项目中使用fastutil优化数据格式

fastutil介绍:

fastutil是扩展了Java标准集合框架(Map、List、Set;HashMap、ArrayList、HashSet)的类库,提供了特殊类型的map、set、list和queue;
fastutil能够提供更小的内存占用,更快的存取速度;我们使用fastutil提供的集合类,来替代自己平时使用的JDK的原生的Map、List、Set,好处在于,fastutil集合类,可以减小内存的占用,并且在进行集合的遍历、根据索引(或者key)获取元素的值和设置元素的值的时候,提供更快的存取速度;
fastutil也提供了64位的array、set和list,以及高性能快速的,以及实用的IO类,来处理二进制和文本类型的文件;
fastutil最新版本要求Java 7以及以上版本;

fastutil的每一种集合类型,都实现了对应的Java中的标准接口(比如fastutil的map,实现了Java的Map接口),因此可以直接放入已有系统的任何代码中。
fastutil还提供了一些JDK标准类库中没有的额外功能(比如双向迭代器)。

fastutil除了对象和原始类型为元素的集合,fastutil也提供引用类型的支持,但是对引用类型是使用等于号(=)进行比较的,而不是equals()方法。

fastutil尽量提供了在任何场景下都是速度最快的集合类库。

Spark中应用fastutil的场景:

1、如果算子函数使用了外部变量;那么第一,你可以使用Broadcast广播变量优化;第二,可以使用Kryo序列化类库,提升序列化性能和效率;第三,如果外部变量是某种比较大的集合,那么可以考虑使用fastutil改写外部变量,首先从源头上就减少内存的占用,通过广播变量进一步减少内存占用,再通过Kryo序列化类库进一步减少内存占用。

2、在你的算子函数里,也就是task要执行的计算逻辑里面,如果有逻辑中,出现,要创建比较大的Map、List等集合,可能会占用较大的内存空间,而且可能涉及到消耗性能的遍历、存取等集合操作;那么此时,可以考虑将这些集合类型使用fastutil类库重写,使用了fastutil集合类以后,就可以在一定程度上,减少task创建出来的集合类型的内存占用。避免executor内存频繁占满,频繁唤起GC,导致性能下降。

关于fastutil调优的说明:

fastutil其实没有你想象中的那么强大,也不会跟官网上说的效果那么一鸣惊人。广播变量、Kryo序列化类库、fastutil,都是之前所说的,对于性能来说,类似于一种调味品,烤鸡,本来就很好吃了,然后加了一点特质的孜然麻辣粉调料,就更加好吃了一点。分配资源、并行度、RDD架构与持久化,这三个就是烤鸡;broadcast、kryo、fastutil,类似于调料。

比如说,你的spark作业,经过之前一些调优以后,大概30分钟运行完,现在加上broadcast、kryo、fastutil,也许就是优化到29分钟运行完、或者更好一点,也许就是28分钟、25分钟。

shuffle调优,15分钟;groupByKey用reduceByKey改写,执行本地聚合,也许10分钟;跟公司申请更多的资源,比如资源更大的YARN队列,1分钟。

fastutil的使用:

第一步:在pom.xml中引用fastutil的包
<dependency>
<groupId>fastutil</groupId>
<artifactId>fastutil</artifactId>
<version>5.0.9</version>
</dependency>
速度比较慢,可能是从国外的网去拉取jar包,可能要等待5分钟,甚至几十分钟,不等

List<Integer> => IntList

基本都是类似于IntList的格式,前缀就是集合的元素类型;特殊的就是Map,Int2IntMap,代表了key-value映射的元素类型。除此之外,刚才也看到了,还支持object、reference。

 

七.性能调优之在实际项目中调节数据本地化等待时长

 

Spark在Driver上,对Application的每一个stage的task,进行分配之前,都会计算出每个task要计算的是哪个分片数据,RDD的某个partition;

Spark的task分配算法,优先,会希望每个task正好分配到它要计算的数据所在的节点,这样的话,就不用在网络间传输数据;

但是呢,通常来说,有时,事与愿违,可能task没有机会分配到它的数据所在的节点,为什么呢,可能那个节点的计算资源和计算能力都满了;

所以呢,这种时候,通常来说,Spark会等待一段时间,默认情况下是3s钟(不是绝对的,还有很多种情况,对不同的本地化级别,都会去等待),

到最后,实在是等待不了了,就会选择一个比较差的本地化级别,比如说,将task分配到靠它要计算的数据所在节点,比较近的一个节点,然后进行计算。

但是对于第二种情况,通常来说,肯定是要发生数据传输,task会通过其所在节点的BlockManager来获取数据,BlockManager发现自己本地没有数据,会通过一个getRemote()方法,通过TransferService(网络数据传输组件)从数据所在节点的BlockManager中,获取数据,通过网络传输回task所在节点。

对于我们来说,当然不希望是类似于第二种情况的了。最好的,当然是task和数据在一个节点上,直接从本地executor的BlockManager中获取数据,纯内存,或者带一点磁盘IO;如果要通过网络传输数据的话,那么实在是,性能肯定会下降的,大量网络传输,以及磁盘IO,都是性能的杀手。

我们什么时候要调节这个参数?

观察日志,spark作业的运行日志,推荐大家在测试的时候,先用client模式,在本地就直接可以看到比较全的日志。
日志里面会显示,starting task。。。,PROCESS LOCAL、NODE LOCAL
观察大部分task的数据本地化级别

如果大多都是PROCESS_LOCAL,那就不用调节了
如果是发现,好多的级别都是NODE_LOCAL、ANY,那么最好就去调节一下数据本地化的等待时长
调节完,应该是要反复调节,每次调节完以后,再来运行,观察日志
看看大部分的task的本地化级别有没有提升;看看,整个spark作业的运行时间有没有缩短

你别本末倒置,本地化级别倒是提升了,但是因为大量的等待时长,spark作业的运行时间反而增加了,那就还是不要调节了

怎么调节?

spark.locality.wait,默认是3s;6s,10s

默认情况下,下面3个的等待时长,都是跟上面那个是一样的,都是3s
spark.locality.wait.process
spark.locality.wait.node
spark.locality.wait.rack

new SparkConf()
.set("spark.locality.wait", "10")


PROCESS_LOCAL:进程本地化,代码和数据在同一个进程中,也就是在同一个executor中;计算数据的task由executor执行,数据在executor的BlockManager中;性能最好
NODE_LOCAL:节点本地化,代码和数据在同一个节点中;比如说,数据作为一个HDFS block块,就在节点上,而task在节点上某个executor中运行;或者是,数据和task在一个节点上的不同executor中;数据需要在进程间进行传输
NO_PREF:对于task来说,数据从哪里获取都一样,没有好坏之分
RACK_LOCAL:机架本地化,数据和task在一个机架的两个节点上;数据需要通过网络在节点之间进行传输
ANY:数据和task可能在集群中的任何地方,而且不在一个机架中,性能最差

 

spark.locality.wait,默认是3s

 

标签:task,fastutil,并行度,内存,executor,spark,序列化,分配资源
来源: https://www.cnblogs.com/Transkai/p/11448569.html