最大连续子序列 (HDU1223)(动态规划)
作者:互联网
Problem Description
给定K个整数的序列{ N1, N2, …, NK },其任意连续子序列可表示为{ Ni, Ni+1, …,
Nj },其中 1 <= i <= j <= K。最大连续子序列是所有连续子序列中元素和最大的一个,
例如给定序列{ -2, 11, -4, 13, -5, -2 },其最大连续子序列为{ 11, -4, 13 },最大和
为20。
在今年的数据结构考卷中,要求编写程序得到最大和,现在增加一个要求,即还需要输出该
子序列的第一个和最后一个元素。
Input
测试输入包含若干测试用例,每个测试用例占2行,第1行给出正整数K( < 10000 ),第2行给出K个整数,中间用空格分隔。当K为0时,输入结束,该用例不被处理。
Output
对每个测试用例,在1行里输出最大和、最大连续子序列的第一个和最后一个元
素,中间用空格分隔。如果最大连续子序列不唯一,则输出序号i和j最小的那个(如输入样例的第2、3组)。若所有K个元素都是负数,则定义其最大和为0,输出整个序列的首尾元素。
Sample Input
6
-2 11 -4 13 -5 -2
10
-10 1 2 3 4 -5 -23 3 7 -21
6
5 -8 3 2 5 0
1
10
3
-1 -5 -2
3
-1 0 -2
0
Sample Output
20 11 13
10 1 4
10 3 5
10 10 10
0 -1 -2
0 0 0
#include <iostream> #include <cstdio> using namespace std; const int N= 10000; int a[N], dp[N], maxsum, maxstart, maxend; void serach(int n) { int sum, sumstart; maxsum = maxstart = maxend = a[0]; sum = 0; for(int i = 0; i<n; i++) { if(sum < 0) { sum = a[i]; sumstart = a[i]; } else sum += a[i]; if(sum > maxsum) { maxsum = sum; maxstart = sumstart; maxend = a[i]; } } } int main() { int n; while(cin>>n&& n) { for(int i=0; i<n; i++) cin>>a[i]; serach(n); if(maxsum < 0) cout<<"0 "<<a[0]<<" "<<a[n-1]<<endl; else cout<<maxsum<<" "<<maxstart<<" "<<maxend<<endl; } return 0; }
标签:11,20,int,HDU1223,maxstart,序列,动态,maxsum 来源: https://www.cnblogs.com/Shallow-dream/p/11429086.html