洛谷 P4910 帕秋莉的手环【矩阵乘法】
作者:互联网
....
题目:
题意:
帕秋莉有一个手环,有两种珠子可以组成手环,一个为金属性,一个为木属性,当与金珠子相邻的珠子都会发出金色
现在问我们有多少种方案能使得整个手环呈现金色
分析:
我们先手玩一般情况下我们的放置方案可行的个数:
n | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
金 | 1 | 2 | 3 | 5 | 8 |
木 | 1 | 1 | 2 | 3 | 5 |
不难看出这便是斐波那契数列
但因为这一个环,所以我们将第一个放置的珠子进行分类讨论,这里就不作赘述了,大家自己手玩出真知
值得注意的一点,因为我们都是新增一位然后考虑最后一位放置的珠子可以增加的方案数,但对于第一颗就放了木属性的珠子,显然最后一位不能放上木属性的,所以我们在计算的时候不用将其考虑在内
因为是斐波那契递推式,直接暴力求肯定TLE。所以我们使用矩阵乘法进行加速
代码:
#include<cstdio>
#include<string>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
#define LL long long
#define LZX 1000000007
using namespace std;
inline LL read() {
LL d=0,f=1;char s=getchar();
while(s<'0'||s>'9'){if(s=='-')f=-1;s=getchar();}
while(s>='0'&&s<='9'){d=d*10+s-'0';s=getchar();}
return d*f;
}
struct wxn{
LL a[2][2];
wxn operator * (wxn &x)
{
wxn sum;
memset(sum.a,0,sizeof(sum.a));
for(LL i=0;i<2;i++)
for(LL j=0;j<2;j++)
for(LL k=0;k<2;k++)
sum.a[i][j]=(sum.a[i][j]+a[i][k]%LZX*x.a[k][j]%LZX)%LZX;
return sum;
}
}base,ans;
int main()
{
LL t=read();
while(t--)
{
LL n=read()-1;
base.a[0][0]=0;base.a[0][1]=1;base.a[1][0]=1;base.a[1][1]=1;
ans.a[0][0]=2;ans.a[0][1]=1;ans.a[1][0]=0;ans.a[1][1]=0;
while(n)
{
if(n&1) ans=ans*base;
base=base*base;n>>=1;
}
printf("%lld\n",ans.a[0][1]%LZX);
}
return 0;
}
标签:洛谷,题意,LL,手环,珠子,放置,帕秋莉,include 来源: https://blog.csdn.net/qq_35786326/article/details/95508157