【CF451E】Devu and Flowers
作者:互联网
题目大意:求多重集合的组合数, \(N \le 1e14,M \le 20\)。
题解:
考虑容斥原理,具体做法是枚举所有情况,即:枚举子集,第 i 位为 1 表示满足第 i 个条件,正负号采用 sign 进行判断。
对于本题的组合数来说,上指标过大,导致没办法预处理阶乘和逆元进行快速回答,不过下指标很小,可以按照定义进行枚举计算。
代码如下
#include <bits/stdc++.h>
using namespace std;
const int mod=1e9+7;
typedef long long LL;
LL fpow(LL a,LL b,LL c){
LL ret=1%c;
for(;b;b>>=1,a=a*a%c)if(b&1)ret=ret*a%c;
return ret;
}
LL C(LL n,LL m){
if(n<m)return 0;
m=min(m,n-m);
LL ret=1,up=1,down=1;
for(int i=1;i<=m;i++){
up=up*(n-i+1)%mod;
down=down*i%mod;
}
down=fpow(down,mod-2,mod);
ret=ret*up%mod*down%mod;
return ret;
}
LL Lucas(LL n,LL m){
if(n<mod&&m<mod)return C(n,m);
return C(n%mod,m%mod)*Lucas(n/mod,m/mod)%mod;
}
LL f[21],s,ans;
int n;
int main(){
scanf("%d%lld",&n,&s);
for(int i=1;i<=n;i++){
scanf("%lld",&f[i]);
}
for(int i=0;i<1<<n;i++){
LL tot=s,sign=1;
for(int j=1;j<=n;j++)
if(i>>(j-1)&1){
tot-=(f[j]+1);
sign=-sign;
}
if(tot<0)continue;
ans=(ans+Lucas(tot+n-1,n-1)*sign)%mod;
}
printf("%lld\n",(ans+mod)%mod);
return 0;
}
标签:CF451E,le,LL,ret,sign,枚举,tot,Devu,Flowers 来源: https://www.cnblogs.com/wzj-xhjbk/p/10979082.html