其他分享
首页 > 其他分享> > [SDOI2008]仪仗队

[SDOI2008]仪仗队

作者:互联网

题目

[SDOI2008]仪仗队

解析

这个题,我也不知道他们的soltion是怎么写的这么长的。
我们发现我们一次看一条直线上的第一个点,也就是说,若两个点斜率\(k=\frac{y}{x}\)相同的话,我们只能看到x,y最小的那个点。
然后根据小学数学,\(\frac{x}{y}=\frac{kx}{ky}(k=1,2,3...)\),也就是说,我们能看到的点的集合是\(\{(x,y)\mid x⊥y且x\in N_+且y\in N_+ \}\),那我们实际上就是求:对于一个数x,有几个和他互质的数,也就是求欧拉函数。
我们观察一下图,可以这样编一下号

就一目了然了,显然就是求\(3+\sum\phi(i-1)*2(i=2,3,4...)\)
最后,特判一下0和1就可以了。

代码

#include <bits/stdc++.h>
using namespace std;
const int N = 1e5 + 10;
int n, num;
int p[N], phi[N];
bool vis[N];

template<class T>inline void read(T &x) {
    x = 0; int f = 0; char ch = getchar();
    while (!isdigit(ch)) f |= (ch == '-'), ch = getchar();
    while (isdigit(ch)) x = x * 10 + ch - '0', ch = getchar();
    x = f ? -x : x;
    return;
}

void shai(int n) {
    phi[1] = 1;
    for (int i = 2; i <= n; ++i) {
        if (!vis[i]) p[++num] = i, phi[i] = i - 1;
        for (int j = 1; j <= num; ++j) {
            if (p[j] * i > n) break;
            vis[i * p[j]] = 1;
            if (i % p[j] == 0) {
                phi[i * p[j]] = phi[i] * p[j];
                 break;
            } else phi[i * p[j]] = phi[i] * phi[p[j]];
        }
    }
}

int main() {
    read(n);
    shai(N);
    if (n == 1) {
        printf("1");
        return 0;
    }
    if (n == 2) {
        printf("3\n");
        return 0;
    }
    int ans = 3;
    for (int i = 1; i <= n; ++i) printf("%d : %d\n", i, phi[i]);
    for (int i = 3; i <= n; ++i) ans += phi[i - 1] * 2;
    cout << ans;
    return 0;
}

标签:phi,ch,frac,仪仗队,int,return,SDOI2008,getchar
来源: https://www.cnblogs.com/lykkk/p/10899722.html