数据结构-图(邻接矩阵实现)
作者:互联网
一、图的邻接矩阵实现
1.实现了以顶点数组、邻接矩阵为存储结构的图;
2.实现了图的创建(包含有向/无向图、有向/无向网)、顶点/边的增删操作、深度/广度优先遍历的算法;
3.采用顶点对象列表、边(弧)对象列表的方式,对图的创建进行初始化;引用 "ObjArrayList.h"头文件,头文件可参看之前博文“数据结构之顺序列表(支持对象元素)”代码;
4.采用将顶点数组空位的下标索引入队列的方式,解决顶点在数组(静态)中因增删操作造成的不连续存储的问题;引用 “LinkQueue.h”头文件,头文件可参看之前博文“数据结构之队列(循环队列、链队列的类模板实现)”代码;
5.深度优先遍历采用递归算法;广度优先遍历采用队列方式实现;
6.测试代码中以有向网的所有带权边作为边的初始化数据,选择图类型(DG, UDG, DN, UDN)可创建成不同类型的图。
二、测试代码中的图结构图
深度优先遍历序列(从 v1 顶点开始):
1.无向图/网:v1-v2-v3-v5-v4-v6-v7
2.有向图/网:v1-v2-v5-v3-v4-v6-v7
广度优先遍历序列(从 v2 顶点开始):
1.无向图/网:v2-v1-v3-v5-v4-v6-v7
2.有向图/网:v2-v5 后序无法遍历
注:有向图的遍历 是遵循出度方向遍历的,若无出度方向,则遍历终止。
三、代码
//文件名:"GraphAdjMat.h"
#pragma once
#ifndef GRAPHADJMAT_H_
#define GRAPHADJMAT_H_
#include <limits>
#include <string>
#include "ObjArrayList.h"
#include "LinkQueue.h"
using namespace std;
/*
. 图(邻接矩阵实现) Graph Adjacency Matrix
. 相关术语:
. 顶点 Vertex ; 边 Arc ;权 Weight ;
. 有向图 Digraph ;无向图 Undigraph ;
. 有向网 Directed Network ;无向网 Undirected Network ;
*/
class GraphAdjMat
{
/*
. 边(弧) 单元,注:邻接矩阵单元
*/
struct ArcCell
{
int adj; //邻接顶点关系。图:0|不相邻 1|相邻 ;网:无穷(INT_MAX)|不相邻 权值(W)|相邻
char * info; //边(弧)信息
};
public:
/*
. 图 种类
*/
enum GraphType
{
DG, //有向图,默认 0
UDG, //无向图,默认 1
DN, //有向网,默认 2
UDN //无向网,默认 3
};
/*
. 边(弧)数据,注:供外部初始化边数据使用
*/
struct ArcData
{
string Tail; //弧尾
string Head; //弧头
int Weight; //权重
};
private:
const int _INFINITY = INT_MAX; //无穷大 注:包含于头文件 <limits>
static const int _MAX_VERTEX_NUM = 10; //支持最大顶点数
//静态存储结构
string vexs[_MAX_VERTEX_NUM]; //顶点表
ArcCell arcs[_MAX_VERTEX_NUM][_MAX_VERTEX_NUM]; //边(弧)矩阵
int vexNum; //顶点数
int arcNum; //边数
int type; //图种类
int nonAdjInt; //不相邻 int 值:0|无权 无穷|有权
LinkQueue<int> *vexs_null_index_queue = new LinkQueue<int>(); //顶点数组中空顶点位置索引队列 (需要销毁)
bool vexs_visited[_MAX_VERTEX_NUM]; //顶点访问标记数组:0|未访问 1|已访问
void _CreateDG(ObjArrayList<ArcData> * arcsList); //创建有向图
void _CreateUDG(ObjArrayList<ArcData> * arcsList); //创建无向图
void _CreateDN(ObjArrayList<ArcData> * arcsList); //创建有向网
void _CreateUDN(ObjArrayList<ArcData> * arcsList); //创建无向网
int _Locate(string vertex); //定位顶点元素位置
void _DFS_R(int index); //深度优先遍历 递归
public:
GraphAdjMat(int type); //构造函数:初始化图类型
~GraphAdjMat(); //析构函数:销毁图存储空间
void Init(ObjArrayList<string> * vexs, ObjArrayList<ArcData> * arcsList); //初始化顶点、边数据为 图|网
void Display(); //显示 图|网
void InsertVertex(string *vertex); //插入一个新顶点
void DeleteVertex(string *vertex); //删除一个顶点
void InsertArc(ArcData *arc); //插入一条新边(弧)
void DeleteArc(ArcData *arc); //删除一条边(弧)
void Display_DFS(string *vertex); //从指定顶点开始,深度优先遍历
void Display_BFS(string *vertex); //从指定顶点开始,广度优先遍历
GraphAdjMat * MiniSpanTree_Prim(string * vertex); //最小生成树(Prim 算法)
GraphAdjMat * MiniSpanTree_Kruskal(string * vertex); //最小生成树(Kruskal 算法)
};
#endif // !GRAPHADJMAT_H_
//文件名:"GraphAdjMat.cpp"
#include "stdafx.h"
#include <string>
#include "ObjArrayList.h"
#include "LinkQueue.h"
#include "GraphAdjMat.h"
using namespace std;
GraphAdjMat::GraphAdjMat(int type)
{
/*
. 构造函数:初始化图类型
*/
this->type = type;
this->vexNum = 0;
this->arcNum = 0;
if (this->type == DG || this->type == UDG)
{
//图的不相邻 int 值 0
this->nonAdjInt = 0;
}
else
{
//网的不相邻 int 值 无穷大
this->nonAdjInt = this->_INFINITY;
}
}
GraphAdjMat::~GraphAdjMat()
{
/*
. 析构函数:销毁图
*/
//1.释放顶点空位置索引队列
int * e;
while (vexs_null_index_queue->GetHead() != NULL)
{
e = vexs_null_index_queue->DeQueue();
delete e;
}
delete vexs_null_index_queue;
}
void GraphAdjMat::Init(ObjArrayList<string> * vexs, ObjArrayList<ArcData> * arcsList)
{
/*
. 初始化顶点、边数据,并构建 图|网
. 入参:
. vexs: 顶点 列表
. arcsList: 边数据 列表
*/
//1.初始化顶点数据
if (vexs->Length() > this->_MAX_VERTEX_NUM)
{
return;
}
for (int i = 0; i < vexs->Length(); i++)
{
this->vexs[i] = *vexs->Get(i);
}
this->vexNum = vexs->Length();
//1.1.初始化顶点数组空顶点位置索引队列
for (int i = vexs->Length(); i < _MAX_VERTEX_NUM; i++)
{
vexs_null_index_queue->EnQueue(new int(i));
}
//2.根据初始化的图类型,创建指定的图
switch (this->type)
{
case DG:
_CreateDG(arcsList); break;
case UDG:
_CreateUDG(arcsList); break;
case DN:
_CreateDN(arcsList); break;
case UDN:
_CreateUDN(arcsList); break;
default:
break;
}
}
void GraphAdjMat::_CreateDG(ObjArrayList<ArcData> * arcsList)
{
/*
. 创建有向图
. 顶点相邻关系:0|不相邻 1|相邻
. 邻接矩阵为 非对称矩阵
*/
//初始化临时 边对象
ArcData * arcData = NULL;
//初始化 矩阵二维坐标
int m = 0, n = 0;
//初始化边的邻接矩阵
for (int i = 0; i < _MAX_VERTEX_NUM; i++)
{
for (int j = 0; j < _MAX_VERTEX_NUM; j++)
{
this->arcs[i][j].adj = 0;
this->arcs[i][j].info = NULL;
}
}
//遍历边数据列表
for (int i = 0; i < arcsList->Length(); i++)
{
//按序获取边(弧)
arcData = arcsList->Get(i);
//定位(或设置)边的两端顶点位置
m = _Locate(arcData->Tail);
n = _Locate(arcData->Head);
//设置顶点相邻 为 1 (无向)
if (this->arcs[m][n].adj == 1)
{
//去除重复边
continue;
}
this->arcs[m][n].adj = 1;
//边 计数
this->arcNum++;
}
}
void GraphAdjMat::_CreateUDG(ObjArrayList<ArcData> * arcsList)
{
/*
. 创建无向图
. 顶点相邻关系:0|不相邻 1|相邻
. 邻接矩阵为 对称矩阵
*/
//初始化临时 边对象
ArcData * arcData = NULL;
//初始化 矩阵二维坐标
int m = 0, n = 0;
//初始化边的邻接矩阵
for (int i = 0; i < _MAX_VERTEX_NUM; i++)
{
for (int j = 0; j < _MAX_VERTEX_NUM; j++)
{
this->arcs[i][j].adj = 0;
this->arcs[i][j].info = NULL;
}
}
//遍历边数据列表
for (int i = 0; i < arcsList->Length(); i++)
{
//按序获取边(弧)
arcData = arcsList->Get(i);
//定位(或设置)边的两端顶点位置
m = _Locate(arcData->Tail);
n = _Locate(arcData->Head);
//设置顶点相邻 为 1 (有向)
if (this->arcs[m][n].adj == 1 || this->arcs[n][m].adj == 1)
{
//去除重复边
continue;
}
this->arcs[m][n].adj = 1;
this->arcs[n][m].adj = 1;
//边 计数
this->arcNum++;
}
}
void GraphAdjMat::_CreateDN(ObjArrayList<ArcData> * arcsList)
{
/*
. 创建有向网
. 顶点相邻关系:infinity|不相邻 w|相邻
. 邻接矩阵为 非对称矩阵
*/
//初始化临时 边对象
ArcData * arcData = NULL;
//初始化 矩阵二维坐标
int m = 0, n = 0;
//初始化边的邻接矩阵
for (int i = 0; i < _MAX_VERTEX_NUM; i++)
{
for (int j = 0; j < _MAX_VERTEX_NUM; j++)
{
this->arcs[i][j].adj = this->_INFINITY; //无穷大
this->arcs[i][j].info = NULL;
}
}
//遍历边数据列表
for (int i = 0; i < arcsList->Length(); i++)
{
//按序获取边(弧)
arcData = arcsList->Get(i);
//定位(或设置)边的两端顶点位置
m = _Locate(arcData->Tail);
n = _Locate(arcData->Head);
//设置顶点相邻 为 weight 权重
if (this->arcs[m][n].adj != this->_INFINITY)
{
//去除重复边
continue;
}
this->arcs[m][n].adj = arcData->Weight;
//边 计数
this->arcNum++;
}
}
void GraphAdjMat::_CreateUDN(ObjArrayList<ArcData> * arcsList)
{
/*
. 创建无向网
. 顶点相邻关系:infinity|不相邻 w|相邻
. 邻接矩阵为 对称矩阵
*/
//初始化临时 边对象
ArcData * arcData = NULL;
//初始化 矩阵二维坐标
int m = 0, n = 0;
//初始化边的邻接矩阵
for (int i = 0; i < _MAX_VERTEX_NUM; i++)
{
for (int j = 0; j < _MAX_VERTEX_NUM; j++)
{
this->arcs[i][j].adj = this->_INFINITY; //无穷大
this->arcs[i][j].info = NULL;
}
}
//遍历边数据列表
for (int i = 0; i < arcsList->Length(); i++)
{
//按序获取边(弧)
arcData = arcsList->Get(i);
//定位(或设置)边的两端顶点位置
m = _Locate(arcData->Tail);
n = _Locate(arcData->Head);
//设置顶点相邻 为 weight 权重
if (this->arcs[m][n].adj != this->_INFINITY || this->arcs[n][m].adj != this->_INFINITY)
{
//去除重复边
continue;
}
if (arcData->Weight == this->_INFINITY)
{
//去除权重为 无穷 的边
continue;
}
this->arcs[m][n].adj = arcData->Weight;
this->arcs[n][m].adj = arcData->Weight;
//边 计数
this->arcNum++;
}
}
int GraphAdjMat::_Locate(string vertex)
{
/*
. 定位顶点元素位置
. 后期可改成【字典树】,顶点数超过100个后定位顶点位置可更快
*/
//遍历定位顶点位置
for (int i = 0; i < this->_MAX_VERTEX_NUM; i++)
{
if (vertex == this->vexs[i])
{
return i;
}
}
cout << endl << "顶点[" << vertex << "]不存在。" << endl;
return -1;
}
void GraphAdjMat::Display()
{
/*
. 显示 图|网 (输出顶点数组、邻接矩阵)
*/
//显示顶点数组
//注:当删除某个中间序号顶点后,顶点数组就不是连续的
cout << endl << "顶点数组:" << endl;
for (int i = 0, num = 0; i < this->_MAX_VERTEX_NUM && num < this->vexNum; i++)
{
if (this->vexs[i] != "")
{
cout << " (" << i << ")" << this->vexs[i];
num++;
}
}
//显示边(邻接矩阵)
cout << endl << "边(邻接矩阵):" << endl;
cout << " ";
for (int i = 0; i < this->_MAX_VERTEX_NUM; i++)
{
cout << "[" << i << "]";
}
cout << endl;
for (int i = 0; i < this->_MAX_VERTEX_NUM; i++)
{
cout << "[" << i << "] ";
for (int j = 0; j < this->_MAX_VERTEX_NUM; j++)
{
if (this->arcs[i][j].adj == this->_INFINITY)
cout << " + ";
else
cout << " " << this->arcs[i][j].adj << " ";
}
cout << endl;
}
}
void GraphAdjMat::InsertVertex(string *vertex)
{
/*
. 插入一个新顶点
*/
//1.判断顶点是否已存在
if (_Locate(*vertex) > -1)
{
cout << endl << "该顶点已存在。" << endl;
return;
}
//2.判断顶点数是否达到上限
if (this->vexNum >= this->_MAX_VERTEX_NUM)
{
cout << endl << "顶点数已达上限。" << endl;
return;
}
//3.插入新顶点,并自增顶点总数
int * index = vexs_null_index_queue->DeQueue(); //从空位置索引队列中取
this->vexs[*index] = *vertex;
this->vexNum++;
//4.新增的顶点在邻接矩阵中不需要作任何操作(已初始化)
}
void GraphAdjMat::DeleteVertex(string *vertex)
{
/*
. 删除一个顶点
*/
//1.判断顶点是否已存在
int index = _Locate(*vertex);
if (index == -1)
{
cout << endl << "该顶点不存在。" << endl;
return;
}
//2.删除该顶点,并自减顶点总数
this->vexs[index] = "";
this->vexNum--;
//3.清除邻接矩阵 index 行列的数据,即将此行列 恢复初始化状态
if (this->type == DG || this->type == UDG)
{
//图
for (int i = 0; i < this->_MAX_VERTEX_NUM; i++)
{
this->arcs[i][index].adj = 0;
this->arcs[index][i].adj = 0;
}
}
else
{
//网
for (int i = 0; i < this->_MAX_VERTEX_NUM; i++)
{
this->arcs[i][index].adj = this->_INFINITY;
this->arcs[index][i].adj = this->_INFINITY;
}
}
}
void GraphAdjMat::InsertArc(ArcData *arc)
{
/*
. 插入一条新边(弧)
. 若已存在,将对其更新
*/
//1.定位顶点位置
int i = _Locate(arc->Tail);
int j = _Locate(arc->Head);
//2.判断顶点是否存在
if (i == -1 || j == -1)
{
cout << endl << "该边顶点不存在。" << endl;
return;
}
//3.插入/更新一条边
if (this->type == DG)
{
//有向无权图
this->arcs[i][j].adj = 1;
}
else if (this->type == UDG)
{
//无向无权图
this->arcs[i][j].adj = 1;
this->arcs[j][i].adj = 1;
}
else if (this->type == DN)
{
//有向有权网
this->arcs[i][j].adj = arc->Weight;
}
else
{
//无向有权网
this->arcs[i][j].adj = arc->Weight;
this->arcs[j][i].adj = arc->Weight;
}
}
void GraphAdjMat::DeleteArc(ArcData *arc)
{
/*
. 删除一条边(弧)
*/
//1.定位顶点位置
int i = _Locate(arc->Tail);
int j = _Locate(arc->Head);
//2.判断顶点是否存在
if (i == -1 || j == -1)
{
cout << endl << "该边顶点不存在。" << endl;
return;
}
//3.删除一条边,即 恢复初始化状态
if (this->type == DG)
{
//有向无权图
this->arcs[i][j].adj = 0;
}
else if (this->type == UDG)
{
//无向无权图
this->arcs[i][j].adj = 0;
this->arcs[j][i].adj = 0;
}
else if (this->type == DN)
{
//有向有权网
this->arcs[i][j].adj = this->_INFINITY;
}
else
{
//无向有权网
this->arcs[i][j].adj = this->_INFINITY;
this->arcs[j][i].adj = this->_INFINITY;
}
}
void GraphAdjMat::Display_DFS(string *vertex)
{
/*
. 深度优先遍历显示,从指定顶点开始
*/
//1.判断顶点是否存在
int index = _Locate(*vertex);
if (index == -1)
return;
//2.初始化顶点访问数组
for (int i = 0; i < this->_MAX_VERTEX_NUM; i++)
{
this->vexs_visited[i] = 0;
}
//3.深度优先遍历 递归
cout << "深度优先遍历:(从顶点" << *vertex << "开始)" << endl;
_DFS_R(index);
}
void GraphAdjMat::_DFS_R(int index)
{
/*
. 深度优先遍历 递归
. 有向/无向算法是一样的
. 有向图|网,以当前顶点的出度方向遍历
. 无向图|网,以当前顶点的相邻结点方向遍历(可理解为“出度”,但不是出度)
*/
//1.访问顶点,并标记已访问
cout << this->vexs[index] << " ";
this->vexs_visited[index] = 1;
//2.访问其相邻顶点
for (int i = 0; i < this->_MAX_VERTEX_NUM; i++)
{
//当边值 不是 不相邻int值(0|无权 无穷|有权),且未被访问过时,可访问
if (this->arcs[index][i].adj != this->nonAdjInt && this->vexs_visited[i] != 1)
{
_DFS_R(i);
}
}
}
void GraphAdjMat::Display_BFS(string *vertex)
{
/*
. 广度优先遍历显示,从指定顶点开始
. 类似于树的层次遍历算法
*/
//1.判断顶点是否存在
int index = _Locate(*vertex);
if (index == -1)
return;
//2.初始化顶点访问数组
for (int i = 0; i < this->_MAX_VERTEX_NUM; i++)
{
this->vexs_visited[i] = 0;
}
//3.广度优先遍历
cout << "广度优先遍历:(从顶点" << *vertex << "开始)" << endl;
//3.1.初始化队列
LinkQueue<int> * vexQ = new LinkQueue<int>();
//3.2.访问开始顶点,并标记访问、入队
cout << this->vexs[index] << " ";
this->vexs_visited[index] = 1;
vexQ->EnQueue(new int(index));
//3.3.出队,并遍历邻接顶点(下一层次),访问后入队
while (vexQ->GetHead() != NULL)
{
index = *vexQ->DeQueue();
for (int j = 0; j < _MAX_VERTEX_NUM; j++)
{
//未访问过的邻接顶点
if (this->arcs[index][j].adj != this->nonAdjInt && this->vexs_visited[j] != 1)
{
//访问顶点,并标记访问、入队
cout << this->vexs[j] << " ";
this->vexs_visited[j] = 1;
vexQ->EnQueue(new int(j));
}
}
}
//4.释放队列
int * e;
while (vexQ->GetHead() != NULL)
{
e = vexQ->DeQueue();
delete e;
}
delete vexQ;
}
//文件名:"GraphAdjMat_Test.cpp"
#include "stdafx.h"
#include <iostream>
#include "GraphAdjMat.h"
#include "ObjArrayList.h"
using namespace std;
int main()
{
//初始化顶点数据
string * v1 = new string("v1");
string * v2 = new string("v2");
string * v3 = new string("v3");
string * v4 = new string("v4");
string * v5 = new string("v5");
string * v6 = new string("v6");
string * v7 = new string("v7");
ObjArrayList<string> * vexs = new ObjArrayList<string>();
vexs->Add(v1);
vexs->Add(v2);
vexs->Add(v3);
vexs->Add(v4);
vexs->Add(v5);
vexs->Add(v6);
vexs->Add(v7);
//初始化边(弧)数据
GraphAdjMat::ArcData * arc1 = new GraphAdjMat::ArcData{ "v1", "v2", 2 };
GraphAdjMat::ArcData * arc2 = new GraphAdjMat::ArcData{ "v1", "v3", 3 };
GraphAdjMat::ArcData * arc3 = new GraphAdjMat::ArcData{ "v1", "v4", 4 };
GraphAdjMat::ArcData * arc4 = new GraphAdjMat::ArcData{ "v3", "v1", 5 };
GraphAdjMat::ArcData * arc5 = new GraphAdjMat::ArcData{ "v3", "v2", 6 };
GraphAdjMat::ArcData * arc6 = new GraphAdjMat::ArcData{ "v3", "v5", 7 };
GraphAdjMat::ArcData * arc7 = new GraphAdjMat::ArcData{ "v2", "v5", 8 };
GraphAdjMat::ArcData * arc8 = new GraphAdjMat::ArcData{ "v4", "v6", 9 };
GraphAdjMat::ArcData * arc9 = new GraphAdjMat::ArcData{ "v4", "v7", 9 };
GraphAdjMat::ArcData * arc10 = new GraphAdjMat::ArcData{ "v6", "v7", 9 };
ObjArrayList<GraphAdjMat::ArcData> * arcsList = new ObjArrayList<GraphAdjMat::ArcData>();
arcsList->Add(arc1);
arcsList->Add(arc2);
arcsList->Add(arc3);
arcsList->Add(arc4);
arcsList->Add(arc5);
arcsList->Add(arc6);
arcsList->Add(arc7);
arcsList->Add(arc8);
arcsList->Add(arc9);
arcsList->Add(arc10);
//测试1:无向图
cout << endl << "无向图初始化:" << endl;
GraphAdjMat * udg = new GraphAdjMat(GraphAdjMat::UDG);
udg->Init(vexs, arcsList);
udg->Display();
//1.1.深度优先遍历
cout << endl << "无向图深度优先遍历序列:" << endl;
udg->Display_DFS(v1);
//1.2.广度优先遍历
cout << endl << "无向图广度优先遍历序列:" << endl;
udg->Display_BFS(v2);
//1.3.插入新顶点、新边
cout << endl << "无向图插入新顶点、新边:" << endl;
udg->InsertVertex(new string("v8"));
udg->InsertArc(new GraphAdjMat::ArcData{ "v8", "v1", 8 });
udg->Display();
//1.4.删除顶点、边
cout << endl << "无向图删除顶点v1、边arc9:" << endl;
udg->DeleteVertex(v1);
udg->DeleteArc(arc9);
udg->Display();
//测试2:有向图
cout << endl << "有向图:" << endl;
GraphAdjMat * dg = new GraphAdjMat(GraphAdjMat::DG);
dg->Init(vexs, arcsList);
dg->Display();
//2.1.深度优先遍历
cout << endl << "有向图深度优先遍历序列:" << endl;
dg->Display_DFS(v1);
//2.2.广度优先遍历
cout << endl << "有向图广度优先遍历序列:" << endl;
dg->Display_BFS(v2);
//测试:无向网
cout << endl << "无向网:" << endl;
GraphAdjMat * udn = new GraphAdjMat(GraphAdjMat::UDN);
udn->Init(vexs, arcsList);
udn->Display();
//测试:有向网
cout << endl << "有向网:" << endl;
GraphAdjMat * dn = new GraphAdjMat(GraphAdjMat::DN);
dn->Init(vexs, arcsList);
dn->Display();
return 0;
}
标签:vexs,arcs,实现,邻接矩阵,GraphAdjMat,int,顶点,数据结构,arcsList 来源: https://blog.csdn.net/qq_18250439/article/details/89341233