其他分享
首页 > 其他分享> > 浅谈 Raft 分布式一致性协议|图解 Raft

浅谈 Raft 分布式一致性协议|图解 Raft

作者:互联网

前言

本篇文章将模拟一个KV数据读写服务,从提供单一节点读写服务,到结合分布式一致性协议(Raft)后,逐步扩展为一个分布式的,满足一致性读写需求的读写服务的过程。

其中将配合引入Raft协议的种种概念:选主、一致性、共识、安全等,通篇阅读之后,将帮助你深刻理解什么是分布式一致性协议。

一、 单机KV数据读写服务

DB Engine这里可以简单看成对数据的状态进行存储(比如B+树型的组织形式),负责存储KV的内容 ,并假设这个KV服务将提供如下接口:

思考此时KV服务的可靠性:

思考此时KV服务的正确性:

数据规模不断增加,我们需要扩大这个KV服务的规模,将其构建成一个分布式的系统

二、一致性与共识算法

2.1 从复制开始

既然一个节点会挂,那么我们就多准备一个节点!

我们这里只考虑主副本负责接收数据,而从副本只负责同步接收主副本数据的模式,如果主从都开放数据接收能力,将要考虑更多高可用和数据一致性的问题。

2.2 如何复制

2.3 具体的写流程

2.4 具体的读流程

2.5 什么是一致性

对于我们的KV服务,要像操作一台机器一样,对用户来说在写入成功后,就应该能读到最近写入的值,而不关心具体底层是如何分布式实现。

一致性是一种模型(或语义),约定一个分布式系统如何向外界提供服务,KV服务中常见的一致性模型有以下两种:

2.6 复制协议-当失效发生

上述用到的添加了一个从副本节点的方式,我们暂且将其称为山寨版分布式一致性协议——复制协议(因为它依赖于主从副本间的复制操作)

那么当主副本失效时,以这个复制协议为基础的KV服务的运行情况如何呢:

衍生出的一些的问题:

2.7 共识算法

什么是共识:一个值一旦确定,所有人都认同

共识协议不等于一致性:

一般讨论共识协议时提到的一致性,都指线性一致性

三、一致性协议案例:Raft

3.1 Ratf概述

3.2 复制状态机(RSM)

3.3 Raft角色

3.4 Raft日志复制

接下来讲解一下Raft协议中Log是如何在节点间同步的:

  1. 第一张图s2是当前Leader,紫色的小箭头指向每个节点已经确认commit的Log位置
  2. 第二张图s2又append了一条新的Log,用K标识
  3. 第三张图表示,s2将自己收到的K以及自己的Commited Index发送给所有Follower节点。Follower都同步Leader的Log以及Commited Index,并且Follower的状态机检测到自己的Commited Index又向前推进了,说明有新的Log值达成了共识,就会把Commited Index没读取的Log值应用给状态机
  4. 第四张图,当Follower完成步骤三的操作之后,会告诉Leader自己已经拿到这个Log值了,Leader在收到多数派的确认消息后,就可以确定这个K已经永远的持久化,也就是已经Commit了,因此将Commited Index向后推一位

这里有一个细节就是,虽然Raft协议使节点间的数据最终达成了一致,但是节点Log数据落盘时间是有先后的(因为Commited Index在各节点之间存在差异,所以Log与状态机是有时差的)

3.5 Raft从节点失效

  1. 图一假设s3失效了很久,Log有很多数据没有同步
  2. 图二表示此时的Leader是s2,将自己Log中的K和自己的Commited Index复制给s1
  3. 图三中s2的K完成了commit(流程参考Raft日志复制),因为s1、s2共两个节点已经形成了多数派(此时已经有容错能力了)
  4. 图四中,s3尝试重新同步数据,在Raft协议中,s3会向s2逆向迭代的去获取Log数据(K、QK、TQK、XTQK),直到与s3当前Log相对齐则完成数据同步(当然Raft具体实现中应用对此过程进行了优化)

3.6 Raft Term

Term(周期的概念),在Raft中相当于一个逻辑的时钟,下面介绍:

3.7 Raft主节点失效

3.8 Raft Leader failure

接下来模拟一下主节点失效后的流程,并且注意此时图一当中,s1的Log内容比较特殊,为XW,这个场景是可以实现的,比如一开始有s1、s2、s3,其中s1是Leader,首先将X同步给了s2和s3,并且接受到了新的W,但是突然s1节点卡死了,s2和s3重新开始选举Leader为s2,最终s2和s3的Log变成了XTQ(这只是一种情况,一切皆有可能),然后s1又恢复了。

关于为什么s3落后s2两条Commited Index,有可能是s2一次同步了两条Log给s3,而s3的状态机还没来得及同步数据,但是s3接收到在标识TQ的Log后,将其commit到自己的Log之中,就返回确认响应给了s2,s2将自己的Commited Index向后推进到Q的位置。

3.9 Raft 安全性 - 同 Term

3.10 Raft 安全性 - 跨 Term

四、回到KV

4.1 重新打造KV服务

结合Raft算法,更新一下我们的KV

回顾一下一致性读写的定义:

多个副本只有单个副本可以提供服务(一个Leader万一忙不过来怎么办)

4.2 回到共识算法

4.3 共识算法的未来

小结

本文根据字节青训课程中一节针对《分布式数据一致性》的课程内容的进行总结与整理,希望可以帮助大家加深对以Raft为代表的分布式一致性协议的理解。

标签:副本,浅谈,节点,状态机,Raft,图解,Leader,Log
来源: https://www.cnblogs.com/YLTFY1998/p/16600755.html