树状数组(一)
作者:互联网
前置知识
lowbit
求出最后一个二进制中最后一个1在什么位置
int lowbit(int x) {
return x & (-x);
}
原理:原码 & 补码
例如:11 & (-11)
11原码: 0000 1011
-11原码: 1000 1011
-11反码: 1111 0100
-11补码: 1111 0101
0000 1011
& 1111 0101
-----------
0000 0001
简介
用于快速处理单点修改和求前缀和问题的数据结构,时间复杂度为\(log(n)\)。
功能模块
查询前缀和
int c[N]
inline int query(int x) {
int sum = 0;
for (; x; x -= x & (-x)) {
s += c[x];
}
}
单点修改
int c[N];
inline void modify(int x, int val) {
for (; x <= n; x += x & (-x)) {
c[x] += val;
}
}
树状数组二分
从高到低,每位二进制看看是否能取1
inline long long query(long long s) {
long long t = 0;
int pos = 0;
for (int j = 18; j >= 0; j--) {
if (pos + (1 << j) <= n && t + c[pos + (1 << j)] <= s) {
pos = pos + (1 << j);
t += c[pos];
}
}
return pos;
}
单点查询
运用差分思想,把维护一个差分的树状数组
#include <bits/stdc++.h>
using namespace std;
/*
树状数组 + 差分应用
实现区间加 + 求前缀和
a[1] = d1
a[2] = d1 + d2
a[3] = d1 + d2 + d3
...
S[1 - 3] = a[1] + a[2] + a[3]
= d1 + d1 + d2 + d1 + d2 + d3
= 3d1 + 2d2 + d3
= (x + 1 - i) * di
= (x + 1) * Sdi - S*i*di
维护d 和 i*d 两个数组
*/
typedef long long ll;
typedef unsigned long long u64;
const int N = 2010000;
int n, q;
int a[N];
int lowbit(int x) {
return x & (-x);
}
template<class T>
struct BIT {
T c[N];
int size = 0;
void resize(int s) {
size = s;
}
void modify(int x, T val) {
for (; x <= size; x += lowbit(x)) {
c[x] += val;
}
}
T query(int x) {
T s = 0;
for (; x; x -= lowbit(x)) {
s += c[x];
}
return s;
}
};
BIT<u64> c1, c2;
int main() {
scanf("%d%d", &n, &q);
c1.resize(n), c2.resize(n);
for (int i = 0; i < q; i++) {
int ty;
scanf("%d",&ty);
if (ty == 1) {
int l, r;
u64 d;
scanf("%d%d%llu",&l,&r,&d);
c1.modify(l, d);
c1.modify(r + 1, -d);
c2.modify(l, l * d);
c2.modify(r + 1, (r + 1) * (-d));
} else {
int x;
scanf("%d",&x);
u64 ans = (x + 1) * c1.query(x) - c2.query(x);
printf("%llu\n",ans);
}
}
}
高维树状数组
和一维一样进行处理
#include <bits/stdc++.h>
using namespace std;
const int N = 503;
/*
高维树状数组
和一维没什么区别
*/
long long c[N][N];
int a[N][N];
int n, m, q;
inline int lowbit(int x) {
return x & (-x);
}
inline void modify(int x, int y, long long v) {
for (int p = x; p <= n; p += lowbit(p)) {
for (int q = y; q <= m; q += lowbit(q)) {
c[p][q] += v;
}
}
}
inline long long query(int x, int y) {
long long s = 0;
for (int p = x; p; p -= lowbit(p)) {
for (int q = y; q; q -= lowbit(q)) {
s += c[p][q];
}
}
return s;
}
int main() {
scanf("%d%d%d", &n, &m, &q);
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
scanf("%d",&a[i][j]);
modify(i, j, a[i][j]);
}
}
for (int i = 1; i <= q; i++) {
int ty;
scanf("%d",&ty);
if (ty == 1) {
int x, y, d;
scanf("%d%d%d",&x,&y,&d);
modify(x, y, d - a[x][y]);
a[x][y] = d;
} else {
int x, y;
scanf("%d%d",&x,&y);
printf("%lld\n",query(x, y));
}
}
}
树状数组模板
template<class T>
struct BIT {
T c[N];
int size;
void resize(int s) { size = s; }
void modif(int x, T d) {
assert(x != 0);
for (; x <= size; x += x & (-x)) {
c[x] += d;
}
}
T query(int x) {
assert(x<=size);
T s = 0;
for (; x; x -= x & (-x)) {
s += c[x];
}
return s;
}
};
标签:树状,int,void,modify,long,数组,d1 来源: https://www.cnblogs.com/guyuLihua/p/16573777.html