其他分享
首页 > 其他分享> > Importance Sampling 的权重

Importance Sampling 的权重

作者:互联网

\[E_p [f(z)] = \int p(z)f(z) dz = \int \frac {p(z)}{q(z)} q(z) f(z) dz = \int \frac{p(z)}{q(z)} f(z) q(z) dz \approx \frac{1}{N}\sum_{i=1}^Nf(z_i)\frac{p(z_i)}{q(z_i)} \]

\[z_i \sim q(z) , i = 1, \dots ,N \]

用\(q(z_i)\)采样,得到\(z_i\), 然后用\(\frac{1}{N}\sum_{i=1}^Nf(z_i)\frac{p(z_i)}{q(z_i)}\),近似原来的期望。当\(p(z_i)\)和它的近似分布\(q(z_i)\)的比值越大时,表明如果按照\(q(z_i)\)来采样时,这个样本点越难采到,其权重\(\frac{p(z_i)}{q(z_i)}\)就要越大

标签:采样,frac,权重,Importance,sum,Nf,Sampling,int,dz
来源: https://www.cnblogs.com/urcjzz/p/16454185.html