其他分享
首页 > 其他分享> > 环形链表 II

环形链表 II

作者:互联网

来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/linked-list-cycle-ii

给定一个链表的头节点  head ,返回链表开始入环的第一个节点。 如果链表无环,则返回 null。

如果链表中有某个节点,可以通过连续跟踪 next 指针再次到达,则链表中存在环。 为了表示给定链表中的环,评测系统内部使用整数 pos 来表示链表尾连接到链表中的位置(索引从 0 开始)。如果 pos 是 -1,则在该链表中没有环。注意:pos 不作为参数进行传递,仅仅是为了标识链表的实际情况。

不允许修改 链表。

点击查看代码

public class Solution {
    public ListNode detectCycle(ListNode head) {
        if(head == null){
            return null;
        }
        List<ListNode> nodes = new ArrayList<>();
        while(head.next != null){
            nodes.add(head);
            head = head.next;
               for (int i = 0; i < nodes.size() ; i++) {
                if(head.next == nodes.get(i)){
                    return nodes.get(i);
                }
            }
        }
         return null;
    }
}

示例 1:

输入:head = [3,2,0,-4], pos = 1
输出:返回索引为 1 的链表节点
解释:链表中有一个环,其尾部连接到第二个节点。
示例 2:

输入:head = [1,2], pos = 0
输出:返回索引为 0 的链表节点
解释:链表中有一个环,其尾部连接到第一个节点。
示例 3:

输入:head = [1], pos = -1
输出:返回 null
解释:链表中没有环。

力扣:

点击查看代码
方法一:哈希表
思路与算法

一个非常直观的思路是:我们遍历链表中的每个节点,并将它记录下来;一旦遇到了此前遍历过的节点,就可以判定链表中存在环。借助哈希表可以很方便地实现。

代码

C++JavaCJavaScriptGolang

public class Solution {
    public ListNode detectCycle(ListNode head) {
        ListNode pos = head;
        Set<ListNode> visited = new HashSet<ListNode>();
        while (pos != null) {
            if (visited.contains(pos)) {
                return pos;
            } else {
                visited.add(pos);
            }
            pos = pos.next;
        }
        return null;
    }
}
复杂度分析

时间复杂度:O(N)O(N),其中 NN 为链表中节点的数目。我们恰好需要访问链表中的每一个节点。

空间复杂度:O(N)O(N),其中 NN 为链表中节点的数目。我们需要将链表中的每个节点都保存在哈希表当中。

方法二:快慢指针
思路与算法

我们使用两个指针,\textit{fast}fast 与 \textit{slow}slow。它们起始都位于链表的头部。随后,\textit{slow}slow 指针每次向后移动一个位置,而 \textit{fast}fast 指针向后移动两个位置。如果链表中存在环,则 \textit{fast}fast 指针最终将再次与 \textit{slow}slow 指针在环中相遇。

如下图所示,设链表中环外部分的长度为 aa。\textit{slow}slow 指针进入环后,又走了 bb 的距离与 \textit{fast}fast 相遇。此时,\textit{fast}fast 指针已经走完了环的 nn 圈,因此它走过的总距离为 a+n(b+c)+b=a+(n+1)b+nca+n(b+c)+b=a+(n+1)b+nc。



根据题意,任意时刻,\textit{fast}fast 指针走过的距离都为 \textit{slow}slow 指针的 22 倍。因此,我们有

a+(n+1)b+nc=2(a+b) \implies a=c+(n-1)(b+c)
a+(n+1)b+nc=2(a+b)⟹a=c+(n−1)(b+c)

有了 a=c+(n-1)(b+c)a=c+(n−1)(b+c) 的等量关系,我们会发现:从相遇点到入环点的距离加上 n-1n−1 圈的环长,恰好等于从链表头部到入环点的距离。

因此,当发现 \textit{slow}slow 与 \textit{fast}fast 相遇时,我们再额外使用一个指针 \textit{ptr}ptr。起始,它指向链表头部;随后,它和 \textit{slow}slow 每次向后移动一个位置。最终,它们会在入环点相遇。

代码

C++JavaCJavaScriptGolang

public class Solution {
    public ListNode detectCycle(ListNode head) {
        if (head == null) {
            return null;
        }
        ListNode slow = head, fast = head;
        while (fast != null) {
            slow = slow.next;
            if (fast.next != null) {
                fast = fast.next.next;
            } else {
                return null;
            }
            if (fast == slow) {
                ListNode ptr = head;
                while (ptr != slow) {
                    ptr = ptr.next;
                    slow = slow.next;
                }
                return ptr;
            }
        }
        return null;
    }
}
复杂度分析

时间复杂度:O(N)O(N),其中 NN 为链表中节点的数目。在最初判断快慢指针是否相遇时,\textit{slow}slow 指针走过的距离不会超过链表的总长度;随后寻找入环点时,走过的距离也不会超过链表的总长度。因此,总的执行时间为 O(N)+O(N)=O(N)O(N)+O(N)=O(N)。

空间复杂度:O(1)O(1)。我们只使用了 \textit{slow}, \textit{fast}, \textit{ptr}slow,fast,ptr 三个指针。

标签:II,head,slow,环形,fast,链表,textit,null
来源: https://www.cnblogs.com/xy7112/p/16414964.html