sklearn练习1 回归
作者:互联网
from sklearn.svm import SVR from sklearn.pipeline import make_pipeline from sklearn.preprocessing import StandardScaler import numpy as np n_samples, n_features = 10, 5 rng = np.random.RandomState(0) y = rng.randn(n_samples) X = rng.randn(n_samples, n_features) regr = make_pipeline(StandardScaler(), SVR(C=1.0, epsilon=0.2)) regr.fit(X, y) #输出 Pipeline(steps=[('standardscaler', StandardScaler()), ('svr', SVR(epsilon=0.2))]) #svr_rbf = SVR(kernel='rbf', C=100, gamma=0.1, epsilon=.1) #svr_rbf.fit(train_x, train_y)
标签:epsilon,回归,练习,samples,import,SVR,StandardScaler,sklearn 来源: https://www.cnblogs.com/Li-JT/p/16335377.html