[转]Prometheus笔记(一)metric type
作者:互联网
原文:https://blog.csdn.net/hjxzb/article/details/81028806
---------------
Prometheus笔记(一)metric type
Prometheus客户端库提供四种核心度量标准类型。 这些目前仅在客户端库中区分(以启用针对特定类型的使用而定制的API)和有线协议。 Prometheus服务器尚未使用类型信息,并将所有数据展平为无类型时间序列。(本文所有示例代码都是使用go来举例的)
1、Counter
计数器是表示单个单调递增计数器的累积量,其值只能增加或在重启时重置为零。 例如,您可以使用计数器来表示服务的总请求数,已完成的任务或错误总数。 不要使用计数器来监控可能减少的值。 例如,不要使用计数器来处理当前正在运行的进程数,而应该用Gauge。
counter主要有两个方法:
//将counter值加1.
Inc()
// 将指定值加到counter值上,如果指定值< 0会panic.
Add(float64)
1.1 Counter
一般 metric 容器使用的步骤都是:
1、初始化一个metric容器
2、Register注册容器
3、向容器中添加值
使用举例:
//step1:初始一个counter
pushCounter := prometheus.NewCounter(prometheus.CounterOpts{
Name: "repository_pushes", // 注意: 没有help字符串
})
err := prometheus.Register(pushCounter) // 会返回一个错误.
if err != nil {
fmt.Println("Push counter couldn't be registered, no counting will happen:", err)
return
}
// Try it once more, this time with a help string.
pushCounter = prometheus.NewCounter(prometheus.CounterOpts{
Name: "repository_pushes",
Help: "Number of pushes to external repository.",
})
//setp2: 注册容器
err = prometheus.Register(pushCounter)
if err != nil {
fmt.Println("Push counter couldn't be registered AGAIN, no counting will happen:", err)
return
}
pushComplete := make(chan struct{})
// TODO: Start a goroutine that performs repository pushes and reports
// each completion via the channel.
for range pushComplete {
//step3:向容器中写入值
pushCounter.Inc()
}
输出:
Push counter couldn't be registered, no counting will happen: descriptor Desc{fqName: "repository_pushes", help: "", constLabels: {}, variableLabels: []} is invalid: empty help string
1
1.2 CounterVec
CounterVec是一组counter,这些计数器具有相同的描述,但它们的变量标签具有不同的值。 如果要计算按各种维度划分的相同内容(例如,响应代码和方法分区的HTTP请求数),则使用此方法。使用NewCounterVec创建实例。
//step1:初始化一个容器
httpReqs := prometheus.NewCounterVec(
prometheus.CounterOpts{
Name: "http_requests_total",
Help: "How many HTTP requests processed, partitioned by status code and HTTP method.",
},
[]string{"code", "method"},
)
//step2:注册容器
prometheus.MustRegister(httpReqs)
httpReqs.WithLabelValues("404", "POST").Add(42)
// If you have to access the same set of labels very frequently, it
// might be good to retrieve the metric only once and keep a handle to
// it. But beware of deletion of that metric, see below!
//step3:向容器中写入值,主要调用容器的方法如Inc()或者Add()方法
m := httpReqs.WithLabelValues("200", "GET")
for i := 0; i < 1000000; i++ {
m.Inc()
}
// Delete a metric from the vector. If you have previously kept a handle
// to that metric (as above), future updates via that handle will go
// unseen (even if you re-create a metric with the same label set
// later).
httpReqs.DeleteLabelValues("200", "GET")
// Same thing with the more verbose Labels syntax.
httpReqs.Delete(prometheus.Labels{"method": "GET", "code": "200"})
2、Gauge
2.1 Gauge
Gauge可以用来存放一个可以任意变大变小的数值,通常用于测量值,例如温度或当前内存使用情况,或者运行的goroutine数量
主要有以下四个方法
// 将Gauge中的值设为指定值.
Set(float64)
// 将Gauge中的值加1.
Inc()
// 将Gauge中的值减1.
Dec()
// 将指定值加到Gauge中的值上。(指定值可以为负数)
Add(float64)
// 将指定值从Gauge中的值减掉。(指定值可以为负数)
Sub(float64)
示例代码(实时统计CPU的温度):
//step1:初始化容器
cpuTemprature := prometheus.NewGauge(prometheus.GaugeOpts{
Name: "CPU_Temperature",
Help: "the temperature of CPU",
})
//step2:注册容器
prometheus.MustRegister(cpuTemprature)
//定时获取cpu温度并且写入到容器
func(){
tem = getCpuTemprature()
//step3:向容器中写入值。调用容器的方法
cpuTemprature.Set(tem)
}
2.2 GaugeVec
假设你要一次性统计四个cpu的温度,这个时候就适合使用GaugeVec了。
cpusTemprature := prometheus.NewGaugeVec(
prometheus.GaugeOpts{
Name: "CPUs_Temperature",
Help: "the temperature of CPUs.",
},
[]string{
// Which cpu temperature?
"cpuName",
},
)
prometheus.MustRegister(cpusTemprature)
cpusTemprature.WithLabelValues("cpu1").Set(temperature1)
cpusTemprature.WithLabelValues("cpu2").Set(temperature2)
cpusTemprature.WithLabelValues("cpu3").Set(temperature3)
3、Summary
Summary从事件或样本流中捕获单个观察,并以类似于传统汇总统计的方式对其进行汇总:1。观察总和,2。观察计数,3。排名估计。典型的用例是观察请求延迟。 默认情况下,Summary提供延迟的中位数。
temps := prometheus.NewSummary(prometheus.SummaryOpts{
Name: "pond_temperature_celsius",
Help: "The temperature of the frog pond.",
Objectives: map[float64]float64{0.5: 0.05, 0.9: 0.01, 0.99: 0.001},
})
// Simulate some observations.
for i := 0; i < 1000; i++ {
temps.Observe(30 + math.Floor(120*math.Sin(float64(i)*0.1))/10)
}
// Just for demonstration, let's check the state of the summary by
// (ab)using its Write method (which is usually only used by Prometheus
// internally).
metric := &dto.Metric{}
temps.Write(metric)
fmt.Println(proto.MarshalTextString(metric))
4、Histogram
主要用于表示一段时间范围内对数据进行采样,(通常是请求持续时间或响应大小),并能够对其指定区间以及总数进行统计,通常我们用它计算分位数的直方图。
temps := prometheus.NewHistogram(prometheus.HistogramOpts{
Name: "pond_temperature_celsius",
Help: "The temperature of the frog pond.", // Sorry, we can't measure how badly it smells.
Buckets: prometheus.LinearBuckets(20, 5, 5), // 5 buckets, each 5 centigrade wide.
})
// Simulate some observations.
for i := 0; i < 1000; i++ {
temps.Observe(30 + math.Floor(120*math.Sin(float64(i)*0.1))/10)
}
// Just for demonstration, let's check the state of the histogram by
// (ab)using its Write method (which is usually only used by Prometheus
// internally).
metric := &dto.Metric{}
temps.Write(metric)
fmt.Println(proto.MarshalTextString(metric))
欢迎加入go语言学习交流群 636728449
二、参考资料
[1] https://godoc.org/github.com/prometheus/client_golang/prometheus
[2] https://prometheus.io/docs/introduction/overview/
————————————————
版权声明:本文为CSDN博主「程序员学编程」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/hjxzb/article/details/81028806
标签:容器,temperature,float64,metric,counter,prometheus,Prometheus,type 来源: https://www.cnblogs.com/oxspirt/p/16305301.html