其他分享
首页 > 其他分享> > 机器学习数学基础之 欧式距离、曼哈段距离

机器学习数学基础之 欧式距离、曼哈段距离

作者:互联网

欧式距离

  两点之间的直线距离

     \(d = \sqrt{(x_{1}-y_{1})^{2}+(x_{2}-y_{2})^{2}}\)

     \(d = \sqrt{(x_{1}-y_{1})^{2}+(x_{2}-y_{2})^{2}+(x_{3}-y_{3})^{2}}\)

     \(d = \sqrt{\sum_{i=1}^{n}\left ( x_{i}-y_{i}\right )^{2}} \)

     \(d = \sqrt{(\vec{a}-\vec{b})(\vec{a}-\vec{b})^{T}}\)

                 

 

 曼哈顿距离(城市街区距离

  两个点在标准坐标系上的绝对轴距总和:

      \(d = \left | x_{1}-y_{1}\right |+\left | x_{1}-y_{2}\right |\)

      \(d = \sum_{i=1}^{n}\left | x_{i}-y_{i}\right |\)

                

 

标签:距离,x2,y1,曼哈,欧式,y2,段距离,vec
来源: https://www.cnblogs.com/wsy107316/p/16217692.html