卷积神经网络相关(1):卷积神经网络模型的参数量Params和计算量FLOPs简单代码
作者:互联网
文章目录
概述
一、利用torchstat
1.1 方法
1.2 代码
1.3 输出
二、利用ptflops
2.1 方法
2.2 代码
2.3 输出
三、利用thop
3.1 方法
3.2 代码
3.3 输出
概述
Params:是指网络模型中需要训练的参数总数,理解为参数量。
FLOPs:是指浮点运算次数,s表示复数,理解为计算量,用于衡量模型的复杂度。(注意与FLOPS区别,FLOPS是每秒浮点运算次数,用来衡量硬件的性能。)
一、利用torchstat
1.1 方法
pip install torchstat
1.2 代码
from torchstat import stat import torchvision.models as models net = models.resnet18() #以resnet18为例 stat(net, (3, 224, 224)) # (3,224,224)表示输入图片的尺寸
1.3 输出
[MAdd]: AdaptiveAvgPool2d is not supported! [Flops]: AdaptiveAvgPool2d is not supported! [Memory]: AdaptiveAvgPool2d is not supported! module name input shape output shape params memory(MB) MAdd Flops MemRead(B) MemWrite(B) duration[%] MemR+W(B) 0 conv1 3 224 224 64 112 112 9408.0 3.06 235,225,088.0 118,013,952.0 639744.0 3211264.0 6.88% 3851008.0 1 bn1 64 112 112 64 112 112 128.0 3.06 3,211,264.0 1,605,632.0 3211776.0 3211264.0 1.24% 6423040.0 2 relu 64 112 112 64 112 112 0.0 3.06 802,816.0 802,816.0 3211264.0 3211264.0 2.48% 6422528.0 3 maxpool 64 112 112 64 56 56 0.0 0.77 1,605,632.0 802,816.0 3211264.0 802816.0 14.10% 4014080.0 4 layer1.0.conv1 64 56 56 64 56 56 36864.0 0.77 231,010,304.0 115,605,504.0 950272.0 802816.0 4.95% 1753088.0 5 layer1.0.bn1 64 56 56 64 56 56 128.0 0.77 802,816.0 401,408.0 803328.0 802816.0 0.00% 1606144.0 6 layer1.0.relu 64 56 56 64 56 56 0.0 0.77 200,704.0 200,704.0 802816.0 802816.0 1.24% 1605632.0 7 layer1.0.conv2 64 56 56 64 56 56 36864.0 0.77 231,010,304.0 115,605,504.0 950272.0 802816.0 4.95% 1753088.0 8 layer1.0.bn2 64 56 56 64 56 56 128.0 0.77 802,816.0 401,408.0 803328.0 802816.0 0.00% 1606144.0 9 layer1.1.conv1 64 56 56 64 56 56 36864.0 0.77 231,010,304.0 115,605,504.0 950272.0 802816.0 4.40% 1753088.0 10 layer1.1.bn1 64 56 56 64 56 56 128.0 0.77 802,816.0 401,408.0 803328.0 802816.0 1.24% 1606144.0 11 layer1.1.relu 64 56 56 64 56 56 0.0 0.77 200,704.0 200,704.0 802816.0 802816.0 0.00% 1605632.0 12 layer1.1.conv2 64 56 56 64 56 56 36864.0 0.77 231,010,304.0 115,605,504.0 950272.0 802816.0 4.95% 1753088.0 13 layer1.1.bn2 64 56 56 64 56 56 128.0 0.77 802,816.0 401,408.0 803328.0 802816.0 1.24% 1606144.0 14 layer2.0.conv1 64 56 56 128 28 28 73728.0 0.38 115,505,152.0 57,802,752.0 1097728.0 401408.0 2.47% 1499136.0 15 layer2.0.bn1 128 28 28 128 28 28 256.0 0.38 401,408.0 200,704.0 402432.0 401408.0 1.24% 803840.0 16 layer2.0.relu 128 28 28 128 28 28 0.0 0.38 100,352.0 100,352.0 401408.0 401408.0 1.29% 802816.0 17 layer2.0.conv2 128 28 28 128 28 28 147456.0 0.38 231,110,656.0 115,605,504.0 991232.0 401408.0 3.71% 1392640.0 18 layer2.0.bn2 128 28 28 128 28 28 256.0 0.38 401,408.0 200,704.0 402432.0 401408.0 0.00% 803840.0 19 layer2.0.downsample.0 64 56 56 128 28 28 8192.0 0.38 12,744,704.0 6,422,528.0 835584.0 401408.0 0.00% 1236992.0 20 layer2.0.downsample.1 128 28 28 128 28 28 256.0 0.38 401,408.0 200,704.0 402432.0 401408.0 0.00% 803840.0 21 layer2.1.conv1 128 28 28 128 28 28 147456.0 0.38 231,110,656.0 115,605,504.0 991232.0 401408.0 4.19% 1392640.0 22 layer2.1.bn1 128 28 28 128 28 28 256.0 0.38 401,408.0 200,704.0 402432.0 401408.0 0.00% 803840.0 23 layer2.1.relu 128 28 28 128 28 28 0.0 0.38 100,352.0 100,352.0 401408.0 401408.0 0.00% 802816.0 24 layer2.1.conv2 128 28 28 128 28 28 147456.0 0.38 231,110,656.0 115,605,504.0 991232.0 401408.0 3.71% 1392640.0 25 layer2.1.bn2 128 28 28 128 28 28 256.0 0.38 401,408.0 200,704.0 402432.0 401408.0 0.00% 803840.0 26 layer3.0.conv1 128 28 28 256 14 14 294912.0 0.19 115,555,328.0 57,802,752.0 1581056.0 200704.0 1.24% 1781760.0 27 layer3.0.bn1 256 14 14 256 14 14 512.0 0.19 200,704.0 100,352.0 202752.0 200704.0 1.24% 403456.0 28 layer3.0.relu 256 14 14 256 14 14 0.0 0.19 50,176.0 50,176.0 200704.0 200704.0 0.00% 401408.0 29 layer3.0.conv2 256 14 14 256 14 14 589824.0 0.19 231,160,832.0 115,605,504.0 2560000.0 200704.0 3.71% 2760704.0 30 layer3.0.bn2 256 14 14 256 14 14 512.0 0.19 200,704.0 100,352.0 202752.0 200704.0 0.00% 403456.0 31 layer3.0.downsample.0 128 28 28 256 14 14 32768.0 0.19 12,794,880.0 6,422,528.0 532480.0 200704.0 1.24% 733184.0 32 layer3.0.downsample.1 256 14 14 256 14 14 512.0 0.19 200,704.0 100,352.0 202752.0 200704.0 0.00% 403456.0 33 layer3.1.conv1 256 14 14 256 14 14 589824.0 0.19 231,160,832.0 115,605,504.0 2560000.0 200704.0 4.39% 2760704.0 34 layer3.1.bn1 256 14 14 256 14 14 512.0 0.19 200,704.0 100,352.0 202752.0 200704.0 0.00% 403456.0 35 layer3.1.relu 256 14 14 256 14 14 0.0 0.19 50,176.0 50,176.0 200704.0 200704.0 0.00% 401408.0 36 layer3.1.conv2 256 14 14 256 14 14 589824.0 0.19 231,160,832.0 115,605,504.0 2560000.0 200704.0 3.71% 2760704.0 37 layer3.1.bn2 256 14 14 256 14 14 512.0 0.19 200,704.0 100,352.0 202752.0 200704.0 0.00% 403456.0 38 layer4.0.conv1 256 14 14 512 7 7 1179648.0 0.10 115,580,416.0 57,802,752.0 4919296.0 100352.0 2.48% 5019648.0 39 layer4.0.bn1 512 7 7 512 7 7 1024.0 0.10 100,352.0 50,176.0 104448.0 100352.0 0.00% 204800.0 40 layer4.0.relu 512 7 7 512 7 7 0.0 0.10 25,088.0 25,088.0 100352.0 100352.0 0.00% 200704.0 41 layer4.0.conv2 512 7 7 512 7 7 2359296.0 0.10 231,185,920.0 115,605,504.0 9537536.0 100352.0 4.95% 9637888.0 42 layer4.0.bn2 512 7 7 512 7 7 1024.0 0.10 100,352.0 50,176.0 104448.0 100352.0 0.00% 204800.0 43 layer4.0.downsample.0 256 14 14 512 7 7 131072.0 0.10 12,819,968.0 6,422,528.0 724992.0 100352.0 1.24% 825344.0 44 layer4.0.downsample.1 512 7 7 512 7 7 1024.0 0.10 100,352.0 50,176.0 104448.0 100352.0 0.00% 204800.0 45 layer4.1.conv1 512 7 7 512 7 7 2359296.0 0.10 231,185,920.0 115,605,504.0 9537536.0 100352.0 5.36% 9637888.0 46 layer4.1.bn1 512 7 7 512 7 7 1024.0 0.10 100,352.0 50,176.0 104448.0 100352.0 0.00% 204800.0 47 layer4.1.relu 512 7 7 512 7 7 0.0 0.10 25,088.0 25,088.0 100352.0 100352.0 0.00% 200704.0 48 layer4.1.conv2 512 7 7 512 7 7 2359296.0 0.10 231,185,920.0 115,605,504.0 9537536.0 100352.0 4.95% 9637888.0 49 layer4.1.bn2 512 7 7 512 7 7 1024.0 0.10 100,352.0 50,176.0 104448.0 100352.0 0.00% 204800.0 50 avgpool 512 7 7 512 1 1 0.0 0.00 0.0 0.0 0.0 0.0 1.24% 0.0 51 fc 512 1000 513000.0 0.00 1,023,000.0 512,000.0 2054048.0 4000.0 0.00% 2058048.0 total 11689512.0 25.65 3,638,757,912.0 1,821,399,040.0 2054048.0 4000.0 100.00% 101756992.0 ================================================================================================================================================================= Total params: 11,689,512 ----------------------------------------------------------------------------------------------------------------------------------------------------------------- Total memory: 25.65MB Total MAdd: 3.64GMAdd Total Flops: 1.82GFlops Total MemR+W: 97.04MB Process finished with exit code 0
二、利用ptflops
2.1 方法
pip install ptflops
2.2 代码
import torchvision.models as models import torch from ptflops import get_model_complexity_info with torch.cuda.device(0): net = models.resnet18() flops, params = get_model_complexity_info(net, (3, 224, 224), as_strings=True, print_per_layer_stat=True, verbose=True) print('Flops: ', flops) print('Params: ', params)
2.3 输出
Warning: module BasicBlock is treated as a zero-op. Warning: module ResNet is treated as a zero-op. ResNet( 11.69 M, 100.000% Params, 1.822 GMac, 100.000% MACs, (conv1): Conv2d(0.009 M, 0.080% Params, 0.118 GMac, 6.477% MACs, 3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False) (bn1): BatchNorm2d(0.0 M, 0.001% Params, 0.002 GMac, 0.088% MACs, 64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(0.0 M, 0.000% Params, 0.001 GMac, 0.044% MACs, inplace) (maxpool): MaxPool2d(0.0 M, 0.000% Params, 0.001 GMac, 0.044% MACs, kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False) (layer1): Sequential( 0.148 M, 1.266% Params, 0.465 GMac, 25.510% MACs, (0): BasicBlock( 0.074 M, 0.633% Params, 0.232 GMac, 12.755% MACs, (conv1): Conv2d(0.037 M, 0.315% Params, 0.116 GMac, 6.344% MACs, 64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn1): BatchNorm2d(0.0 M, 0.001% Params, 0.0 GMac, 0.022% MACs, 64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(0.0 M, 0.000% Params, 0.0 GMac, 0.022% MACs, inplace) (conv2): Conv2d(0.037 M, 0.315% Params, 0.116 GMac, 6.344% MACs, 64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): BatchNorm2d(0.0 M, 0.001% Params, 0.0 GMac, 0.022% MACs, 64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) (1): BasicBlock( 0.074 M, 0.633% Params, 0.232 GMac, 12.755% MACs, (conv1): Conv2d(0.037 M, 0.315% Params, 0.116 GMac, 6.344% MACs, 64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn1): BatchNorm2d(0.0 M, 0.001% Params, 0.0 GMac, 0.022% MACs, 64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(0.0 M, 0.000% Params, 0.0 GMac, 0.022% MACs, inplace) (conv2): Conv2d(0.037 M, 0.315% Params, 0.116 GMac, 6.344% MACs, 64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): BatchNorm2d(0.0 M, 0.001% Params, 0.0 GMac, 0.022% MACs, 64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (layer2): Sequential( 0.526 M, 4.496% Params, 0.412 GMac, 22.635% MACs, (0): BasicBlock( 0.23 M, 1.969% Params, 0.181 GMac, 9.913% MACs, (conv1): Conv2d(0.074 M, 0.631% Params, 0.058 GMac, 3.172% MACs, 64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) (bn1): BatchNorm2d(0.0 M, 0.002% Params, 0.0 GMac, 0.011% MACs, 128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(0.0 M, 0.000% Params, 0.0 GMac, 0.011% MACs, inplace) (conv2): Conv2d(0.147 M, 1.261% Params, 0.116 GMac, 6.344% MACs, 128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): BatchNorm2d(0.0 M, 0.002% Params, 0.0 GMac, 0.011% MACs, 128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (downsample): Sequential( 0.008 M, 0.072% Params, 0.007 GMac, 0.363% MACs, (0): Conv2d(0.008 M, 0.070% Params, 0.006 GMac, 0.352% MACs, 64, 128, kernel_size=(1, 1), stride=(2, 2), bias=False) (1): BatchNorm2d(0.0 M, 0.002% Params, 0.0 GMac, 0.011% MACs, 128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (1): BasicBlock( 0.295 M, 2.527% Params, 0.232 GMac, 12.722% MACs, (conv1): Conv2d(0.147 M, 1.261% Params, 0.116 GMac, 6.344% MACs, 128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn1): BatchNorm2d(0.0 M, 0.002% Params, 0.0 GMac, 0.011% MACs, 128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(0.0 M, 0.000% Params, 0.0 GMac, 0.011% MACs, inplace) (conv2): Conv2d(0.147 M, 1.261% Params, 0.116 GMac, 6.344% MACs, 128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): BatchNorm2d(0.0 M, 0.002% Params, 0.0 GMac, 0.011% MACs, 128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (layer3): Sequential( 2.1 M, 17.962% Params, 0.412 GMac, 22.596% MACs, (0): BasicBlock( 0.919 M, 7.862% Params, 0.18 GMac, 9.891% MACs, (conv1): Conv2d(0.295 M, 2.523% Params, 0.058 GMac, 3.172% MACs, 128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) (bn1): BatchNorm2d(0.001 M, 0.004% Params, 0.0 GMac, 0.006% MACs, 256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(0.0 M, 0.000% Params, 0.0 GMac, 0.006% MACs, inplace) (conv2): Conv2d(0.59 M, 5.046% Params, 0.116 GMac, 6.344% MACs, 256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): BatchNorm2d(0.001 M, 0.004% Params, 0.0 GMac, 0.006% MACs, 256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (downsample): Sequential( 0.033 M, 0.285% Params, 0.007 GMac, 0.358% MACs, (0): Conv2d(0.033 M, 0.280% Params, 0.006 GMac, 0.352% MACs, 128, 256, kernel_size=(1, 1), stride=(2, 2), bias=False) (1): BatchNorm2d(0.001 M, 0.004% Params, 0.0 GMac, 0.006% MACs, 256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (1): BasicBlock( 1.181 M, 10.100% Params, 0.232 GMac, 12.705% MACs, (conv1): Conv2d(0.59 M, 5.046% Params, 0.116 GMac, 6.344% MACs, 256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn1): BatchNorm2d(0.001 M, 0.004% Params, 0.0 GMac, 0.006% MACs, 256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(0.0 M, 0.000% Params, 0.0 GMac, 0.006% MACs, inplace) (conv2): Conv2d(0.59 M, 5.046% Params, 0.116 GMac, 6.344% MACs, 256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): BatchNorm2d(0.001 M, 0.004% Params, 0.0 GMac, 0.006% MACs, 256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (layer4): Sequential( 8.394 M, 71.806% Params, 0.411 GMac, 22.577% MACs, (0): BasicBlock( 3.673 M, 31.422% Params, 0.18 GMac, 9.880% MACs, (conv1): Conv2d(1.18 M, 10.092% Params, 0.058 GMac, 3.172% MACs, 256, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) (bn1): BatchNorm2d(0.001 M, 0.009% Params, 0.0 GMac, 0.003% MACs, 512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(0.0 M, 0.000% Params, 0.0 GMac, 0.003% MACs, inplace) (conv2): Conv2d(2.359 M, 20.183% Params, 0.116 GMac, 6.344% MACs, 512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): BatchNorm2d(0.001 M, 0.009% Params, 0.0 GMac, 0.003% MACs, 512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (downsample): Sequential( 0.132 M, 1.130% Params, 0.006 GMac, 0.355% MACs, (0): Conv2d(0.131 M, 1.121% Params, 0.006 GMac, 0.352% MACs, 256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False) (1): BatchNorm2d(0.001 M, 0.009% Params, 0.0 GMac, 0.003% MACs, 512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (1): BasicBlock( 4.721 M, 40.384% Params, 0.231 GMac, 12.697% MACs, (conv1): Conv2d(2.359 M, 20.183% Params, 0.116 GMac, 6.344% MACs, 512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn1): BatchNorm2d(0.001 M, 0.009% Params, 0.0 GMac, 0.003% MACs, 512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(0.0 M, 0.000% Params, 0.0 GMac, 0.003% MACs, inplace) (conv2): Conv2d(2.359 M, 20.183% Params, 0.116 GMac, 6.344% MACs, 512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): BatchNorm2d(0.001 M, 0.009% Params, 0.0 GMac, 0.003% MACs, 512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (avgpool): AdaptiveAvgPool2d(0.0 M, 0.000% Params, 0.0 GMac, 0.001% MACs, output_size=(1, 1)) (fc): Linear(0.513 M, 4.389% Params, 0.001 GMac, 0.028% MACs, in_features=512, out_features=1000, bias=True) ) Flops: 1.82 GMac Params: 11.69 M Process finished with exit code 0
三、利用thop
3.1 方法
pip install thop
3.2 代码
import torchvision.models as models import torch from thop import profile net = models.resnet18() inputs = torch.randn(1, 3, 224, 224) flops, params = profile(net, (inputs,)) print('flops: ', flops) print('params: ', params)
3.3 输出
[INFO] Register count_convNd() for <class 'torch.nn.modules.conv.Conv2d'>. [INFO] Register count_bn() for <class 'torch.nn.modules.batchnorm.BatchNorm2d'>. [INFO] Register zero_ops() for <class 'torch.nn.modules.activation.ReLU'>. [INFO] Register zero_ops() for <class 'torch.nn.modules.pooling.MaxPool2d'>. [WARN] Cannot find rule for <class 'torchvision.models.resnet.BasicBlock'>. Treat it as zero Macs and zero Params. [WARN] Cannot find rule for <class 'torch.nn.modules.container.Sequential'>. Treat it as zero Macs and zero Params. [INFO] Register count_adap_avgpool() for <class 'torch.nn.modules.pooling.AdaptiveAvgPool2d'>. [INFO] Register count_linear() for <class 'torch.nn.modules.linear.Linear'>. [WARN] Cannot find rule for <class 'torchvision.models.resnet.ResNet'>. Treat it as zero Macs and zero Params. flops: 1819066368.0 params: 11689512.0 Process finished with exit code 0
标签:MACs,14,卷积,0.0,28,神经网络,Params,GMac 来源: https://www.cnblogs.com/ltkekeli1229/p/16155973.html