其他分享
首页 > 其他分享> > 瑞利商

瑞利商

作者:互联网

瑞利商

\(\qquad\)首先我们给出瑞利商(瑞利商是一个标量)的定义:

\[R(A,x)=\frac{x^TAx}{x^Tx} \]

\(\qquad\)其中\(A\)为\(n\times n\)的对称矩阵,\(x\)为维度为\(n\)的向量,我们记\(A\)的从小到大排序的特征值和对应的特征向量为\(\lambda_1,\lambda_2,\lambda_3...\lambda_n;v_1,v_2,v_3...v_n\),满足:

\[\lambda_{min}=\lambda_1\leq\lambda_2\leq...\leq\lambda_n=\lambda_{max} \]

\(\qquad\)瑞利商有性质:

\[\mathop{max}\limits_{x}R(A,x)=\lambda_n \]

\[\mathop{min}\limits_{x}R(A,x)=\lambda_1 \]

证明:

\(\qquad\)由于A为对称矩阵,可以相似对角化为"正交阵-特征对角阵-正交阵"的性形式:

\[A=U\Lambda U^T \]

\(\qquad\)其中\(\Lambda=diag(\lambda_1,\lambda_2,\lambda_3...\lambda_n)\)特征对角阵,\(U=(v_1,v_2,cv_3...v_n)\)为特征向量阵,且为正交阵满足\(UU^T=I\)。由此瑞利商可以转换为:

\[R(A,x)=\frac{x^TAx}{x^Tx} \]

\[=\frac{x^TU\Lambda U^Tx}{x^TUU^Tx} \]

\(\qquad\)我们令\(y=U^Tx\),则瑞利商变为:

\[R(A,x)=\frac{y^T\Lambda y}{y^Ty} \]

\[=\frac{\mathop{\sum}\limits_{i}^n \lambda_iy_i^2}{\mathop{\sum}\limits_{i}^n y_i^2} \]

\(\qquad\)由特征值的大小关系显然有:

\[\lambda_1\mathop{\sum}\limits_{i}^n y_i^2 \leq \mathop{\sum}\limits_{i}^n\lambda_i y_i^2 \leq \lambda_n \mathop{\sum}\limits_{i}^n y_I^2 \]

\(\qquad\)于是有:

\[\frac{\lambda_1\mathop{\sum}\limits_{i}^n y_i^2}{\mathop{\sum}\limits_{i}^n y_i^2} \leq \frac{\mathop{\sum}\limits_{i}^n\lambda_i y_i^2}{\mathop{\sum}\limits_{i}^n y_i^2} \leq \frac{\lambda_n \mathop{\sum}\limits_{i}^n y_I^2}{\mathop{\sum}\limits_{i}^n y_i^2} \]

\[\lambda_1 \leq R(A,x) \leq \lambda_n \]

\(\qquad\)由此证得瑞利商的上界和下界,下面说明这也是瑞利商的上下确界。

\(\qquad\)不论对向量\(x\)进行何种放缩,瑞利商不变,对任意非零实数c,对x进行放缩有:

\[R(A,cx)=\frac{cx^TA cx}{cx^T cx}=\frac{c^2 x^T Ax}{c^2x^Tx}=R(A,x) \]

\(\qquad\)因此不妨令\(x^Tx=1\),此举不会影响到\(x\)的任意性

\(\qquad\)由于\(v_1,v_2,v_3...v_n\)是n维线性空的一组正交基,利用这组正交基对向量\(x\)进行线性表出,设系数为\(a_1,a_2,a_3...a_n\),满足:

\[x=\mathop{\sum}\limits_{i}^n a_iv_i \]

\(\qquad\)由于\(x^Tx=1\),则有:

\[x^Tx=\mathop{\sum}\limits_{i}^na_i^2=1 \]

\(\qquad\)此时考虑到\(U=(v_1,v_2,v_3...v_n)\),且有\(v_1,v_2,v_3...v_n\)相互正交:

\[R(A,x)=\frac{(\mathop{\sum}\limits_{i}^n a_iv_i)^T U \Lambda U^T (\mathop{\sum}\limits_{i}^n a_iv_i)}{x^Tx} \]

\[=(\mathop{\sum}\limits_{i}^n a_iv_i)^T U \Lambda U^T (\mathop{\sum}\limits_{i}^n a_iv_i) \]

\[=\mathop{\sum}\limits_{i}^n a_i^2\lambda_i \]

\(\qquad\)显然也有:

\[\lambda_1 \leq R(A,x) \leq \lambda_n \]

\(\qquad\)并且由于\(\mathop{\sum}\limits_{i}^na_i^2=1\),可以看出:
\(\qquad\)\(\qquad\)当\(a_1^2=1,a_2=a_3=...=a_n=0\)时,此时\(x=v_1\),瑞利商取得最小值\(\lambda_1\)
\(\qquad\)\(\qquad\)当\(a_n^2=1,a_1=a_2=...=a_{n-1}=0\)时,此时\(x=v_n\),瑞利商取得最大值\(\lambda_n\)
\(\qquad\)瑞利商性质证毕。

标签:limits,qquad,sum,瑞利,mathop,lambda
来源: https://www.cnblogs.com/spencergogo/p/16112581.html