其他分享
首页 > 其他分享> > 从查询重写角度理解elasticsearch的高亮原理

从查询重写角度理解elasticsearch的高亮原理

作者:互联网

一、高亮的一些问题

elasticsearch提供了三种高亮方式,前面我们已经简单的了解了elasticsearch的高亮原理; 高亮处理跟实际使用查询类型有十分紧密的关系,其中主要的一点就是muti term 查询的重写,例如wildcard、prefix等,由于查询本身和高亮都涉及到查询语句的重写,如果两者之间的重写机制不同,那么就可能会碰到以下情况

相同的查询语句, 使用unified和fvh得到的高亮结果是不同的,甚至fvh Highlighter无任何高亮信息返回;

二、数据环境

elasticsearch 8.0

PUT highlight_test
{
  "mappings": {
    "properties": {
      "text":{
        "type": "text",
        "term_vector": "with_positions_offsets"
      }
    }
  },
  "settings": {
    "number_of_replicas":0,
    "number_of_shards": 1
  }
}

PUT highlight_test/_doc/1
{
  "name":"mango",
  "text":"my name is mongo, i am test hightlight in elastic search"
}

三、muti term查询重写简介

所谓muti term查询就是查询中并不是明确的关键字,而是需要elasticsearch重写查询语句,进一步明确关键字;以下查询会涉及到muti term查询重写;

fuzzy
prefix
query_string
regexp
wildcard

以上查询都支持rewrite参数,最终将查询重写为bool查询或者bitset;

查询重写主要影响以下几方面

重写需要抓取哪些关键字以及抓取的数量;

抓取关键字的相关性计算方式;

查询重写支持以下参数选项

constant_score,默认值,如果需要抓取的关键字比较少,则重写为bool查询,否则抓取所有的关键字并重写为bitset;直接使用boost参数作为文档score,一般term level的查询的boost默认值为1;

constant_score_boolean,将查询重写为bool查询,并使用boost参数作为文档的score,受到indices.query.bool.max_clause_count 限制,所以默认最多抓取1024个关键字;

scoring_boolean,将查询重写为bool查询,并计算文档的相对权重,受到indices.query.bool.max_clause_count 限制,所以默认最多抓取1024个关键字;

top_terms_blended_freqs_N,抓取得分最高的前N个关键字,并将查询重写为bool查询;此选项不受indices.query.bool.max_clause_count 限制;选择命中文档的所有关键字中权重最大的作为文档的score;

top_terms_boost_N,抓取得分最高的前N个关键字,并将查询重写为bool查询;此选项不受indices.query.bool.max_clause_count 限制;直接使用boost作为文档的score;

top_terms_N,抓取得分最高的前N个关键字,并将查询重写为bool查询;此选项不受indices.query.bool.max_clause_count 限制;计算命中文档的相对权重作为评分;

三、wildcard查询重写分析

我们通过elasticsearch来查看一下以下查询语句的重写逻辑;

{
    "query":{
        "wildcard":{
            "text":{
                "value":"m*"
            }
        }
    }
}

通过查询使用的字段映射类型构建WildCardQuery,并使用查询语句中配置的rewrite对应的MultiTermQuery.RewriteMethod;

//WildcardQueryBuilder.java
@Override
protected Query doToQuery(SearchExecutionContext context) throws IOException {
    MappedFieldType fieldType = context.getFieldType(fieldName);

    if (fieldType == null) {
        throw new IllegalStateException("Rewrite first");
    }

    MultiTermQuery.RewriteMethod method = QueryParsers.parseRewriteMethod(rewrite, null, LoggingDeprecationHandler.INSTANCE);
    return fieldType.wildcardQuery(value, method, caseInsensitive, context);
}

根据查询语句中配置的rewrite,查找对应的MultiTermQuery.RewriteMethod,由于我们没有在wildcard查询语句中设置rewrite参数,这里直接返回null;

//QueryParsers.java
public static MultiTermQuery.RewriteMethod parseRewriteMethod(
    @Nullable String rewriteMethod,
    @Nullable MultiTermQuery.RewriteMethod defaultRewriteMethod,
    DeprecationHandler deprecationHandler
) {
    if (rewriteMethod == null) {
        return defaultRewriteMethod;
    }
    if (CONSTANT_SCORE.match(rewriteMethod, deprecationHandler)) {
        return MultiTermQuery.CONSTANT_SCORE_REWRITE;
    }
    if (SCORING_BOOLEAN.match(rewriteMethod, deprecationHandler)) {
        return MultiTermQuery.SCORING_BOOLEAN_REWRITE;
    }
    if (CONSTANT_SCORE_BOOLEAN.match(rewriteMethod, deprecationHandler)) {
        return MultiTermQuery.CONSTANT_SCORE_BOOLEAN_REWRITE;
    }

    int firstDigit = -1;
    for (int i = 0; i < rewriteMethod.length(); ++i) {
        if (Character.isDigit(rewriteMethod.charAt(i))) {
            firstDigit = i;
            break;
        }
    }

    if (firstDigit >= 0) {
        final int size = Integer.parseInt(rewriteMethod.substring(firstDigit));
        String rewriteMethodName = rewriteMethod.substring(0, firstDigit);

        if (TOP_TERMS.match(rewriteMethodName, deprecationHandler)) {
            return new MultiTermQuery.TopTermsScoringBooleanQueryRewrite(size);
        }
        if (TOP_TERMS_BOOST.match(rewriteMethodName, deprecationHandler)) {
            return new MultiTermQuery.TopTermsBoostOnlyBooleanQueryRewrite(size);
        }
        if (TOP_TERMS_BLENDED_FREQS.match(rewriteMethodName, deprecationHandler)) {
            return new MultiTermQuery.TopTermsBlendedFreqScoringRewrite(size);
        }
    }

    throw new IllegalArgumentException("Failed to parse rewrite_method [" + rewriteMethod + "]");
}
}

WildCardQuery继承MultiTermQuery,直接调用rewrite方法进行重写,由于我们没有在wildcard查询语句中设置rewrite参数,这里直接使用默认的CONSTANT_SCORE_REWRITE;

  //MultiTermQuery.java
  protected RewriteMethod rewriteMethod = CONSTANT_SCORE_REWRITE;
  
  
  @Override
  public final Query rewrite(IndexReader reader) throws IOException {
    return rewriteMethod.rewrite(reader, this);
  }

可以看到CONSTANT_SCORE_REWRITE是直接使用的匿名类,rewrite方法返回的是MultiTermQueryConstantScoreWrapper的实例;

  //MultiTermQuery.java
  public static final RewriteMethod CONSTANT_SCORE_REWRITE =
      new RewriteMethod() {
        @Override
        public Query rewrite(IndexReader reader, MultiTermQuery query) {
          return new MultiTermQueryConstantScoreWrapper<>(query);
        }
      };

在以下方法中,首先会得到查询字段对应的所有term集合;
然后通过 query.getTermsEnum获取跟查询匹配的所有term集合;
最后根据collectTerms调用的返回值决定是否构建bool查询还是bit set;

      //MultiTermQueryConstantScoreWrapper.java
      private WeightOrDocIdSet rewrite(LeafReaderContext context) throws IOException {
        final Terms terms = context.reader().terms(query.field);
        if (terms == null) {
          // field does not exist
          return new WeightOrDocIdSet((DocIdSet) null);
        }

        final TermsEnum termsEnum = query.getTermsEnum(terms);
        assert termsEnum != null;

        PostingsEnum docs = null;

        final List<TermAndState> collectedTerms = new ArrayList<>();
        if (collectTerms(context, termsEnum, collectedTerms)) {
          // build a boolean query
          BooleanQuery.Builder bq = new BooleanQuery.Builder();
          for (TermAndState t : collectedTerms) {
            final TermStates termStates = new TermStates(searcher.getTopReaderContext());
            termStates.register(t.state, context.ord, t.docFreq, t.totalTermFreq);
            bq.add(new TermQuery(new Term(query.field, t.term), termStates), Occur.SHOULD);
          }
          Query q = new ConstantScoreQuery(bq.build());
          final Weight weight = searcher.rewrite(q).createWeight(searcher, scoreMode, score());
          return new WeightOrDocIdSet(weight);
        }

        // Too many terms: go back to the terms we already collected and start building the bit set
        DocIdSetBuilder builder = new DocIdSetBuilder(context.reader().maxDoc(), terms);
        if (collectedTerms.isEmpty() == false) {
          TermsEnum termsEnum2 = terms.iterator();
          for (TermAndState t : collectedTerms) {
            termsEnum2.seekExact(t.term, t.state);
            docs = termsEnum2.postings(docs, PostingsEnum.NONE);
            builder.add(docs);
          }
        }

        // Then keep filling the bit set with remaining terms
        do {
          docs = termsEnum.postings(docs, PostingsEnum.NONE);
          builder.add(docs);
        } while (termsEnum.next() != null);

        return new WeightOrDocIdSet(builder.build());
      }

调用collectTerms默认只会提取查询命中的16个关键字;

      //MultiTermQueryConstantScoreWrapper.java
      private static final int BOOLEAN_REWRITE_TERM_COUNT_THRESHOLD = 16;
      private boolean collectTerms(
          LeafReaderContext context, TermsEnum termsEnum, List<TermAndState> terms)
          throws IOException {
        final int threshold =
            Math.min(BOOLEAN_REWRITE_TERM_COUNT_THRESHOLD, IndexSearcher.getMaxClauseCount());
        for (int i = 0; i < threshold; ++i) {
          final BytesRef term = termsEnum.next();
          if (term == null) {
            return true;
          }
          TermState state = termsEnum.termState();
          terms.add(
              new TermAndState(
                  BytesRef.deepCopyOf(term),
                  state,
                  termsEnum.docFreq(),
                  termsEnum.totalTermFreq()));
        }
        return termsEnum.next() == null;
      }

通过以上分析wildcard查询默认情况下,会提取字段中所有命中查询的关键字;

四、fvh Highlighter中wildcard的查询重写

在muti term query中,提取查询关键字是高亮逻辑一个很重要的步骤;

我们使用以下高亮语句,分析以下高亮中提取查询关键字过程中的查询重写;

{
    "query":{
        "wildcard":{
            "text":{
                "value":"m*"
            }
        }
    },
    "highlight":{
        "fields":{
            "text":{
                "type":"fvh"
            }
        }
    }
}

默认情况下只有匹配的字段才会进行高亮,这里构建CustomFieldQuery;

//FastVectorHighlighter.java
if (field.fieldOptions().requireFieldMatch()) {
    /*
     * we use top level reader to rewrite the query against all readers,
     * with use caching it across hits (and across readers...)
     */
    entry.fieldMatchFieldQuery = new CustomFieldQuery(
        fieldContext.query,
        hitContext.topLevelReader(),
        true,
        field.fieldOptions().requireFieldMatch()
    );
}

通过调用flatten方法得到重写之后的flatQueries,然后将每个提取的关键字重写为BoostQuery;

  //FieldQuery.java
  public FieldQuery(Query query, IndexReader reader, boolean phraseHighlight, boolean fieldMatch)
      throws IOException {
    this.fieldMatch = fieldMatch;
    Set<Query> flatQueries = new LinkedHashSet<>();
    flatten(query, reader, flatQueries, 1f);
    saveTerms(flatQueries, reader);
    Collection<Query> expandQueries = expand(flatQueries);

    for (Query flatQuery : expandQueries) {
      QueryPhraseMap rootMap = getRootMap(flatQuery);
      rootMap.add(flatQuery, reader);
      float boost = 1f;
      while (flatQuery instanceof BoostQuery) {
        BoostQuery bq = (BoostQuery) flatQuery;
        flatQuery = bq.getQuery();
        boost *= bq.getBoost();
      }
      if (!phraseHighlight && flatQuery instanceof PhraseQuery) {
        PhraseQuery pq = (PhraseQuery) flatQuery;
        if (pq.getTerms().length > 1) {
          for (Term term : pq.getTerms()) rootMap.addTerm(term, boost);
        }
      }
    }
  }

由于WildCardQuery是MultiTermQuery的子类,所以在flatten方法中最终直接使用MultiTermQuery.TopTermsScoringBooleanQueryRewrite进行查询重写,这里的top N是MAX_MTQ_TERMS = 1024;

  //FieldQuery.java
  
  private static final int MAX_MTQ_TERMS = 1024;
  
  protected void flatten(
      Query sourceQuery, IndexReader reader, Collection<Query> flatQueries, float boost)
      throws IOException {
      
     ..................................
     ..................................
      
     else if (reader != null) {
      Query query = sourceQuery;
      Query rewritten;
      if (sourceQuery instanceof MultiTermQuery) {
        rewritten =
            new MultiTermQuery.TopTermsScoringBooleanQueryRewrite(MAX_MTQ_TERMS)
                .rewrite(reader, (MultiTermQuery) query);
      } else {
        rewritten = query.rewrite(reader);
      }
      if (rewritten != query) {
        // only rewrite once and then flatten again - the rewritten query could have a speacial
        // treatment
        // if this method is overwritten in a subclass.
        flatten(rewritten, reader, flatQueries, boost);
      }
      // if the query is already rewritten we discard it
    }
    // else discard queries
  }

这里首先计算设置的size和getMaxSize(默认值1024, IndexSearcher.getMaxClauseCount())计算最终提取的命中关键字数量,这里最终是1024个;

这里省略了传入collectTerms的TermCollector匿名子类的实现,其余最终提取关键字数量有关;

  //FieldQuery.java

  @Override
  public final Query rewrite(final IndexReader reader, final MultiTermQuery query)
      throws IOException {
    final int maxSize = Math.min(size, getMaxSize());
    final PriorityQueue<ScoreTerm> stQueue = new PriorityQueue<>();
    collectTerms(
        reader,
        query,
        new TermCollector() {       

          ................

        });

    .............
    return build(b);
  }

这里首先获取查询字段对应的所有term集合,然后获取所有的与查询匹配的term集合,最终通过传入的collector提取关键字;

  //TermCollectingRewrite.java
  final void collectTerms(IndexReader reader, MultiTermQuery query, TermCollector collector)
      throws IOException {
    IndexReaderContext topReaderContext = reader.getContext();
    for (LeafReaderContext context : topReaderContext.leaves()) {
      final Terms terms = context.reader().terms(query.field);
      if (terms == null) {
        // field does not exist
        continue;
      }

      final TermsEnum termsEnum = getTermsEnum(query, terms, collector.attributes);
      assert termsEnum != null;

      if (termsEnum == TermsEnum.EMPTY) continue;

      collector.setReaderContext(topReaderContext, context);
      collector.setNextEnum(termsEnum);
      BytesRef bytes;
      while ((bytes = termsEnum.next()) != null) {
        if (!collector.collect(bytes))
          return; // interrupt whole term collection, so also don't iterate other subReaders
      }
    }
  }

这里通过控制最终提取匹配查询的关键字的数量不超过maxSize;

          //TopTermsRewrite.java
          @Override
          public boolean collect(BytesRef bytes) throws IOException {
            final float boost = boostAtt.getBoost();

            // make sure within a single seg we always collect
            // terms in order
            assert compareToLastTerm(bytes);

            // System.out.println("TTR.collect term=" + bytes.utf8ToString() + " boost=" + boost + "
            // ord=" + readerContext.ord);
            // ignore uncompetitive hits
            if (stQueue.size() == maxSize) {
              final ScoreTerm t = stQueue.peek();
              if (boost < t.boost) return true;
              if (boost == t.boost && bytes.compareTo(t.bytes.get()) > 0) return true;
            }
            ScoreTerm t = visitedTerms.get(bytes);
            final TermState state = termsEnum.termState();
            assert state != null;
            if (t != null) {
              // if the term is already in the PQ, only update docFreq of term in PQ
              assert t.boost == boost : "boost should be equal in all segment TermsEnums";
              t.termState.register(
                  state, readerContext.ord, termsEnum.docFreq(), termsEnum.totalTermFreq());
            } else {
              // add new entry in PQ, we must clone the term, else it may get overwritten!
              st.bytes.copyBytes(bytes);
              st.boost = boost;
              visitedTerms.put(st.bytes.get(), st);
              assert st.termState.docFreq() == 0;
              st.termState.register(
                  state, readerContext.ord, termsEnum.docFreq(), termsEnum.totalTermFreq());
              stQueue.offer(st);
              // possibly drop entries from queue
              if (stQueue.size() > maxSize) {
                st = stQueue.poll();
                visitedTerms.remove(st.bytes.get());
                st.termState.clear(); // reset the termstate!
              } else {
                st = new ScoreTerm(new TermStates(topReaderContext));
              }
              assert stQueue.size() <= maxSize : "the PQ size must be limited to maxSize";
              // set maxBoostAtt with values to help FuzzyTermsEnum to optimize
              if (stQueue.size() == maxSize) {
                t = stQueue.peek();
                maxBoostAtt.setMaxNonCompetitiveBoost(t.boost);
                maxBoostAtt.setCompetitiveTerm(t.bytes.get());
              }
            }

            return true;
          }

通过以上分析可以看到,fvh Highlighter对multi term query的重写,直接使用MultiTermQuery.TopTermsScoringBooleanQueryRewrite,并限制只能最多提取查询关键字1024个;

五、重写可能导致的高亮问题原因分析

经过以上对查询和高亮的重写过程分析可以知道,默认情况下

query阶段提取的是命中查询的所有的关键字,具体行为可以通过rewrite参数进行定制;

Highlight阶段提取的是命中查询的关键字中的前1024个,具体行为不受rewrite参数的控制;

如果查询的字段是大文本字段,导致字段的关键字很多,就可能会出现查询命中的文档的关键字不在前1024个里边,从而导致明明匹配了文档,但是却没有返回高亮信息;

六、解决方案

  1. 进一步明确查询关键字,减少查询命中的关键字的数量,例如输入更多的字符,;
  2. 使用其他类型的查询替换multi term query;

标签:term,高亮,查询,elasticsearch,new,query,重写,final
来源: https://www.cnblogs.com/wufengtinghai/p/16074845.html