其他分享
首页 > 其他分享> > Leetcode 303. 区域和检索 - 数组不可变(中等) 304. 二维区域和检索 - 矩阵不可变(中等) 560. 和为K的子数组(中等) 前缀和数组求窗口和

Leetcode 303. 区域和检索 - 数组不可变(中等) 304. 二维区域和检索 - 矩阵不可变(中等) 560. 和为K的子数组(中等) 前缀和数组求窗口和

作者:互联网

labuladong讲解

303. 区域和检索 - 数组不可变(中等)

题目:

 

 思路:

用前缀和记录开始到当前位置的元素和,这里前缀和数组长度n+1,presum[n+1]代表0-n的元素和

 

class NumArray {
public:
    NumArray(vector<int>& nums) {
        int n=nums.size();
        presum.resize(n+1);
        for(int i=1;i<=n;++i){
            presum[i]=presum[i-1]+nums[i-1];
        }
    }
    
    int sumRange(int left, int right) {
        return presum[right+1]-presum[left];
    }
    vector<int> presum;
};

/**
 * Your NumArray object will be instantiated and called as such:
 * NumArray* obj = new NumArray(nums);
 * int param_1 = obj->sumRange(left,right);
 */

 

304. 二维区域和检索 - 矩阵不可变(中等)

题目:

 

 思路:

 

 

前缀和数组记录[0][0]->[i][j]的所有元素和。为了方便求值,在遍历时presum[i][j]=presum[i-1][j](原点到上边一点的矩形)+presum[i][j-1](原点到左边一点的矩形)-presum[i-1][j-1](原点到左上方的矩形)+matrix[i-1][j-1](加上当前点)

然后求值时presum[row2+1][col2+1](绿色)-presum[row2+1][col1](橙色)-presum[row1][col2+1](蓝色)+presum[row1][col1](粉色)

class NumMatrix {
public:
    NumMatrix(vector<vector<int>>& matrix) {
        int m=matrix.size();
        int n=matrix[0].size();
        presum=vector<vector<int>>(m+1,vector<int>(n+1));
        for(int i=1;i<=m;++i){
            for(int j=1;j<=n;++j){
                presum[i][j]=presum[i-1][j]+presum[i][j-1]-presum[i-1][j-1]+matrix[i-1][j-1];
            }
        }
    }
    
    int sumRegion(int row1, int col1, int row2, int col2) {
        return presum[row2+1][col2+1]-presum[row2+1][col1]-presum[row1][col2+1]+presum[row1][col1];
    }
    vector<vector<int>> presum;
};

/**
 * Your NumMatrix object will be instantiated and called as such:
 * NumMatrix* obj = new NumMatrix(matrix);
 * int param_1 = obj->sumRegion(row1,col1,row2,col2);
 */

 

560. 和为K的子数组(中等)

题目:

 

 

思路:

用哈希表记录当前的前缀和

然后在累加前缀和时,从哈希表中查找相减等于k的值,并累加其次数

 

class Solution {
public:
    int subarraySum(vector<int>& nums, int k) {
        unordered_map<int,int> m;
        int sum=0;
        //base case,当前缀和本身==k时,会查找到0
        m[0]=1;
        int ret=0;
        for(int i=0;i<nums.size();++i){
            sum+=nums[i];
            //查找与sum相减为k的位置
            int other=sum-k;
            if(m.count(other)>0){
                ret+=m[other];
            }
            //累加前缀和为sum的次数
            m[sum]++;
        }
        return ret;
    }
};

 

标签:检索,前缀,NumArray,int,中等,vector,数组,presum,matrix
来源: https://www.cnblogs.com/zl1991/p/15940085.html