其他分享
首页 > 其他分享> > 欧拉回路

欧拉回路

作者:互联网

欧拉路径:从某结点出发一笔画成所经过的路线

欧拉回路:在欧拉路径的基础上又回到起点

1、对于无向连通图

(1)存在欧拉路径的充分必要条件是:度数为奇数的点只能有0个或2个

(2)存在欧拉回路的充分必要条件是:不存在度数为奇数的点

2、对于有向连通图

(1)存在欧拉路径的充分必要条件是:除起点和终点外所有点入度均等于出度,同时要么起点出度比入度多1且终点入度比出度多1,要么起点与终点的入度与出度均相等

(2)存在欧拉回路的充分必要条件是:所有点出度均等于入度

求任意欧拉回路,记录并输出边的编号(链式前向星存图)

1184. 欧拉回路 - AcWing题库

#include <bits/stdc++.h>

using ll = long long;
constexpr int N = 1e5 + 5, M = 4e5 + 5;;

int type;
int h[N], e[M], ne[M], idx;
int n, m;
int ans[M];
bool used[M];
int din[N], dout[N];
int cnt;

void add(int a, int b) {
    e[idx] = b, ne[idx] = h[a], h[a] = idx ++;
}

int main () {    
    std::ios::sync_with_stdio(0); 
    std::cin.tie(0);

    memset(h, -1, sizeof h);
    std::cin >> type;
    std::cin >> n >> m;

    for (int i = 0; i < m; i ++) {
        int a, b;
        std::cin >> a >> b;
        add(a, b);
        if (type == 1) {
            add(b, a);
        }
        din[b] ++, dout[a] ++;
    }

    if (type == 1) {
        for (int i = 1; i <= n; i ++) {
            if (din[i] + dout[i] & 1) {
                std::cout << "NO\n";
                return 0;
            }
        }
    } else {
        for (int i = 1; i <= n; i ++) {
            if (din[i] != dout[i]) {
                std::cout << "NO\n";
                return 0;
            }
        }
    }
    std::function<void(int)> dfs = [&](int u) {
        for (int &i = h[u]; ~i; ) {
            if (used[i]) {
                i = ne[i];
                continue;
            }
            used[i] = true;
            if (type == 1) used[i ^ 1] = true;
            int t;
            if (type == 1) {
                t = i / 2 + 1;
                if (i & 1) t = -t;
            } else {
                t = i + 1;
            }
            int j = e[i];
            i = ne[i];
            dfs(j);
            ans[++ cnt] = t;
        }
    };

        for (int i = 1; i <= n; i++) {
            if (~h[i]) {
                dfs(i);
                break;
            }
        }
    
    if (cnt < m) {
        std::cout << "NO\n";
    } else {
        std::cout << "YES\n";
        for (int i = cnt; i >= 1; i --) {
            std::cout << ans[i] << " \n"[i == 1];
        }
    }

    return 0;
}    
/*

*/

记得删完边再遍历

无向图求最小字典序的欧拉路径

#include <bits/stdc++.h>

using ll = long long;

int main () {    
    std::ios::sync_with_stdio(0); std::cin.tie(0);

    int m, n = 500;
    std::cin >> m;
    std::vector g(n, std::vector(n, 0));
    std::vector<int> d(n);
    for (int i = 0; i < m; i ++) {
        int u, v;
        std::cin >> u >> v;
        u --, v --;
        g[u][v] ++, g[v][u] ++;
        d[u] ++, d[v] ++;
    }

    int start = -1;
    for (int i = 0; i < n; i ++) {
        if (start == -1 && d[i]) {
            start = i;
        }
        if (d[i] & 1) {
            start = i;
            break;
        }
    }
    int cnt = 0;
    std::vector<int> ans;
    std::function<void(int)> dfs = [&](int u) {
        for (int i = 0; i < n; i ++) {
            if (g[u][i]) {
                g[u][i] --, g[i][u] --;
                dfs(i);
            }
        }
        ans.push_back(u + 1);
    };

    dfs(start);


    for (int i = ans.size() - 1; ~i; i --) {
        std::cout << ans[i] << "\n";
    }

    return 0;
}       

求有向图字典序最小欧拉路径

P7771 【模板】欧拉路径 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn)

#include <bits/stdc++.h>

using ll = long long;

int main () {	
	std::ios::sync_with_stdio(0); std::cin.tie(0);

	int n, m;
	std::cin >> n >> m;
	std::vector<int> g[n], din(n), dout(n);
	for (int i = 0; i < m; i ++) {
		int a, b;
		std::cin >> a >> b;
		a --, b --;
		g[a].push_back(b);
		dout[a] ++, din[b] ++;
	}

	for (int i = 0; i < n; i ++) {
		sort(g[i].begin(), g[i].end());
	}

	int start = -1, st = 0, ed = 0;
	bool ok = true;
	for (int i = 0; i < n; i ++) {
		if (din[i] != dout[i]) {
			if (abs(din[i] - dout[i]) > 1) {
				ok = false;
				break;
			} else if (din[i] == dout[i] + 1) {
				ed ++;
			} else {
				st ++, start = i;
			}
		}
	}

	if (st != ed || st > 1 || ed > 1) {
		ok = false;
	}

	if (!ok) {
		std::cout << "No\n";
		return 0;
	}

	std::vector<int> ans;
	std::vector<int> del(n);
	std::function<void(int)> dfs = [&](int u) {
		for (int i = del[u]; i < g[u].size(); i = del[u]) {
			del[u] = i + 1;
			dfs(g[u][i]);
		}
		ans.push_back(u + 1);
	};
	if (start != -1) {
		dfs(start);
	} else {
		for (int i = 0; i < n; i ++) {
			if (g[i].size()) {
				dfs(i);
				break;
			}
		}
	}
	
	std::reverse(ans.begin(), ans.end());
	if (m != ans.size() - 1) {
		std::cout << "No\n";
	} else {
		for (int x : ans) std::cout << x << " "; 
		std::cout << "\n";
	}

	return 0;
}	

有向图判断是否存在欧拉回路

1185. 单词游戏 - AcWing题库

#include <bits/stdc++.h>

using ll = long long;

struct DSU {
    std::vector<int> f, siz;
    DSU(int n) : f(n), siz(n, 1) { iota(f.begin(), f.end(), 0); }
    int leader(int x) {
        while (x != f[x]) x = f[x] = f[f[x]];
        return x;
    }
    bool same(int x, int y) { return leader(x) == leader(y); }
    bool merge(int x, int y) {
        x = leader(x);
        y = leader(y);
        if (x == y) return false;
        siz[x] += siz[y];
        f[y] = x;
        return true;
    }
    int size(int x) { return siz[leader(x)]; }
};

int main () {    
    std::ios::sync_with_stdio(0); std::cin.tie(0);

    int tt; 
    std::cin >> tt;
    while (tt --) {
        int n;
        std::cin >> n;
        std::string s;
        DSU g(30);
        std::vector<bool> st(30);
        std::vector<int> din(30), dout(30);
        int cnt = 0;
        for (int i = 0; i < n; i ++) {
            std::cin >> s;
            int a = s[0] - 'a', b = s.back() - 'a';
            g.merge(a, b);
            dout[a] ++, din[b] ++;
            if (!st[a]) {
                st[a] = true;
                cnt ++;
            }
            if (!st[b]) {
                st[b] = true;
                cnt ++;
            }
        }

        bool ok = true;
        int start = 0, ed = 0;
        for (int i = 0; i < 26; i ++) {
            if (st[i] && g.size(i) != cnt) { //判断连通性
                ok = false;
                break;
            }
            if (st[i]) { //判断是否满足有向图存在欧拉回路的条件
                if (abs(din[i] - dout[i]) > 1) {
                    ok = false;
                } else if (din[i] == dout[i] + 1) {
                    ed ++;
                } else if (din[i] + 1 == dout[i]) {
                    start ++;
                }
            }
        }
        if (start != ed || start > 1 || ed > 1) {
            ok = false;
        }
        if (ok) {
            std::cout << "Ordering is possible.\n";
        } else {
            std::cout << "The door cannot be opened.\n";
        }
    }

    return 0;
}       

有向图按边来寻找字典序最小欧拉环路(暴力写法)

P1127 词链 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn)

#include <bits/stdc++.h>

using ll = long long;

constexpr int N = 1100;

struct DSU {
    std::vector<int> f, siz;
    DSU(int n) : f(n), siz(n, 1) { iota(f.begin(), f.end(), 0); }
    int leader(int x) {
        while (x != f[x]) x = f[x] = f[f[x]];
        return x;
    }
    bool same(int x, int y) { return leader(x) == leader(y); }
    bool merge(int x, int y) {
        x = leader(x);
        y = leader(y);
        if (x == y) return false;
        siz[x] += siz[y];
        f[y] = x;
        return true;
    }
    int size(int x) { return siz[leader(x)]; }
};

struct node {
	int x, y;
}e[N];

int idx;
void add(int a, int b) {
	e[idx ++] = {a, b};
}

int main () {	
	std::ios::sync_with_stdio(0); std::cin.tie(0);

	int n;
	std::cin >> n;
	std::vector<std::string> g(n);
	std::vector<int> din(30), dout(30);
	for (int i = 0; i < n; i ++) {
		std::cin >> g[i];
	}
	sort(g.begin(), g.end());

	int cnt = 0;
	std::vector<bool> st(30);
	DSU G(30);
	int now = g[0][0] - 'a';
	for (int i = 0; i < n; i ++) {
		int a = g[i].front() - 'a';
		int b = g[i].back() - 'a';
		add(a, b);
		din[b] ++, dout[a] ++;
		G.merge(a, b);
		if (!st[a]) {
			st[a] = true;
			cnt ++;
		}
		if (!st[b]) {
			st[b] = true;
			cnt ++;
		}
	}

	bool ok = true;
	int start = 0, ed = 0;
	for (int i = 0; i < 26; i ++) {
        if (st[i] && G.size(i) != cnt) { 
            ok = false;
            break;
        }
        if (st[i]) { 
            if (abs(din[i] - dout[i]) > 1) {
                ok = false;
            } else if (din[i] == dout[i] + 1) {
                ed ++;
            } else if (din[i] + 1 == dout[i]) {
                start ++, now = i;
            }
        }
    }
    if (start != ed || start > 1 || ed > 1) {
        ok = false;
    }
    if (!ok) {
    	std::cout << "***\n";
    	return 0;
    } 

	std::vector<std::string> ans;
	std::vector<bool> used(n);

	std::function<void(int)> dfs = [&](int now) {
		for (int i = 0; i < idx; i ++) {
			if (!used[i] && g[i][0] - 'a' == now) {
				used[i] = true;
				dfs(g[i].back() - 'a');
				ans.push_back(g[i]);
			}
		}	
	};

	dfs(now);

	for (int i = ans.size() - 1; ~i; i --) {
		std::cout << ans[i] << ".\n"[i == 0]; 
	}

	return 0;
}	

因为这题的结点最多只有26个,所以可以直接给字符串排序一下,然后从前往后找第一个没有打上过标记的字符串

判断欧拉回路是否存在则是用并查集以及欧拉回路的性质来判断

dfs从起点开始,起点要么是字典序最小的字母,要么是奇数度数的点

标签:std,din,dout,int,st,++,回路,欧拉
来源: https://www.cnblogs.com/yramvj/p/15872574.html