其他分享
首页 > 其他分享> > 基数排序法

基数排序法

作者:互联网

说明在之前所介绍过的排序方法,都是属于「比较性」的排序法,也就是每次排序时 ,都是比较整个键值的大小以进行排序。

这边所要介绍的「基数排序法」(radix sort)则是属于「分配式排序」(distribution sort),基数排序法又称「桶子法」(bucket sort)或bin sort,顾名思义,它是透过键值的部份资讯,将要排序的元素分配至某些「桶」中,藉以达到排序的作用,基数排序法是属于稳定性的排序,其时间复杂度为O (nlog(r)m),其中r为所采取的基数,而m为堆数,在某些时候,基数排序法的效率高于其它的比较性排序法。

解法基数排序的方式可以采用LSD(Least sgnificant digital)或MSD(Most sgnificant digital),LSD的排序方式由键值的最右边开始,而MSD则相反,由键值的最左边开始。

以LSD为例,假设原来有一串数值如下所示:

73, 22, 93, 43, 55, 14, 28, 65, 39, 81

首先根据个位数的数值,在走访数值时将它们分配至编号0到9的桶子中:

0

1

2

3

4

5

6

7

8

9

81

65

39

43

14

55

28

93

22

73

接下来将这些桶子中的数值重新串接起来,成为以下的数列:

81, 22, 73, 93, 43, 14, 55, 65, 28, 39

接着再进行一次分配,这次是根据十位数来分配:

0

1

2

3

4

5

6

7

8

9

28

39

14

22

43

55

65

73

81

93

接下来将这些桶子中的数值重新串接起来,成为以下的数列:

14, 22, 28, 39, 43, 55, 65, 73, 81, 93

这时候整个数列已经排序完毕;如果排序的对象有三位数以上,则持续进行以上的动作直至最高位数为止。

LSD的基数排序适用于位数小的数列,如果位数多的话,使用MSD的效率会比较好,MSD的方式恰与LSD相反,是由高位数为基底开始进行分配,其他的演 算方式则都相同。

代码部分

#include <stdio.h> 
#include <stdlib.h> 

int main(void) { 
    int data[10] = {73, 22, 93, 43, 55, 14, 28, 65, 39, 81}; 
    int temp[10][10] = {0}; 
    int order[10] = {0}; 
    int i, j, k, n, lsd; 
    k = 0; 
    n = 1; 
    printf("\n排序前: "); 
    for(i = 0; i < 10; i++) 
        printf("%d ", data[i]); 
    putchar('\n'); 
    while(n <= 10) { 
        for(i = 0; i < 10; i++) { 
            lsd = ((data[i] / n) % 10); 
            temp[lsd][order[lsd]] = data[i]; 
            order[lsd]++; 
        } 
        printf("\n重新排列: "); 
        for(i = 0; i < 10; i++) { 
            if(order[i] != 0) 
                for(j = 0; j < order[i]; j++) { 
                    data[k] = temp[i][j]; 
                    printf("%d ", data[k]); 
                    k++; 
                } 
            order[i] = 0; 
        } 
        n *= 10; 
        k = 0; 
    } 

    putchar('\n'); 
    printf("\n排序后: "); 
    for(i = 0; i < 10; i++) 
        printf("%d ", data[i]); 
    return 0; 
} 

标签:排序,22,55,28,基数排序,81
来源: https://blog.csdn.net/weixin_53666393/article/details/122495976