计算几何模板
作者:互联网
const double eps = 1e-8;
const double inf = 1e20;
const double pi = acos(-1.0);
const int maxp = 1010;
//判断正负
inline int sgn (double x) {
if (fabs(x) < eps) return 0;
if (x < 0) return -1;
else return 1;
}
inline double sqr (double x) {return x * x;}
struct Point {
double x, y;
Point () {}
Point (double _x, double _y) {
x = _x;
y = _y;
}
void input () {scanf("%lf%lf", &x, &y);}
void output () {printf("%.2lf%.2lf\n", x, y);}
bool operator == (Point b) const {return sgn(x - b.x) == 0 && sgn(y - b.y) == 0;}
bool operator < (Point b) const {return sgn(x - b.x) == 0 ? sgn(y - b.y) < 0 : x < b.x;}
Point operator + (const Point &b) const {return Point (x + b.x, y + b.y);}
Point operator - (const Point &b) const {return Point (x - b.x, y - b.y);}
Point operator * (const double &k) const {return Point(x * k, y * k);}
Point operator / (const double &k) const {return Point(x / k, y / k);}
double operator ^ (const Point &b) const {return x*b.y - y*b.x;} //叉积
double operator * (const Point &b) const {return x * b.x + y * b.y;} //点乘
double len () {return hypot(x, y);} //距离原点长度
double len2 () {return x * x + y * y;} //距离原点长度的平方
double distance (Point p) {return hypot(x - p.x, y - p.y);} //两点距离
double rad (Point a, Point b) {
Point p = *this;
return fabs(atan2(fabs((a - p) ^ (b - p)), (a - p) * (b - p)));
} //pa和pb所成的夹角
Point trunc (double r) {
double l = len();
if (!sgn(l)) return *this;
r /= l;
return Point (x * r, y * r);
} //化为长度为r的向量
Point rotleft () {return Point(-y, x);} //逆时针旋转90°
Point rotright () {return Point(y, -x);} //顺时针旋转90°
Point rotate (Point p, double angle) {
Point v = (*this) - p;
double c = cos(angle), s = sin(angle);
return Point (p.x + v.x * c - v.y * s, p.y + v.x * s + v.y * c);
} //绕着p点逆时针旋转angle
};
struct Line {
Point s, e;
Line () {}
Line (Point _s, Point _e) {
s = _s;
e = _e;
}
bool operator == (Line v) {return (s == v.s) && (e == v.e);}
Line (Point p, double angle) {
s = p;
if (sgn(angle - pi / 2) == 0) e = (s + Point(0, 1));
else e = (s + Point(1, tan(angle)));
} //根据一个点和倾斜角angle确定直线, 0 <= angle < pi
Line (double a, double b, double c) {
if (sgn(a) == 0) {
s = Point(0, -c / b);
e = Point(1, -c / b);
} else if (sgn(b) == 0) {
s = Point(-c / a, 0);
e = Point(-c / a, 1);
} else {
s = Point(0, -c / b);
e = Point(1, (-c - a) / b);
}
}
void input () {
s.input();
e.input();
}
void adjust () {if (e < s) swap(s, e);}
double length () {return s.distance(e);} //求线段长度
double angle () {
double k = atan2(e.y - s.y, e.x - s.x);
if (sgn(k) < 0) k += pi;
if (sgn(k - pi) == 0) k -= pi;
return k;
} //返回直线倾斜角
int relation (Point p) {
int c = sgn((p - s) ^ (e - s));
if (c < 0) return 1;
else if (c > 0) return 2;
else return 3;
} //点和直线的关系,1在左侧,2在右侧,3在直线上
bool pointonseg (Point p) {return sgn((p - s) ^ (e - s)) == 0 && sgn((p - s) * (p - e)) <= 0;} //点在直线上判断
bool parallel (Line v) {return sgn((e - s) ^ (v.e - v.s)) == 0;} //两向量平行(直线平行或重合)
int segcrossseg (Line v) {
int d1 = sgn((e - s) ^ (v.s - s));
int d2 = sgn((e - s) ^ (v.e - s));
int d3 = sgn((v.e - v.s) ^ (s - v.s));
int d4 = sgn((v.e - v.s) ^ (e - v.s));
if ((d1 ^ d2) == -2 && (d3 ^ d4) == -2) return 2;
return (d1 == 0 && sgn((v.s - s) * (v.s - e)) <= 0) ||
(d2 == 0 && sgn((v.e - s) * (v.e - e)) <= 0) ||
(d3 == 0 && sgn((s - v.s) * (s - v.e)) <= 0) ||
(d4 == 0 && sgn((e - v.s) * (e - v.e)) <= 0);
} //两线段相交判断,2规范相交,1非规范相交,0不相交
int linecrossseg (Line v) {
int d1 = sgn((e - s) ^ (v.s - s));
int d2 = sgn((e - s) ^ (v.e - s));
if ((d1 ^ d2) == -2) return 2;
return (d1 == 0 || d2 == 0);
} //直线(*this)与线段(v)相交判断,2规范相交,1非规范相交,0不相交
int linecrossline (Line v) {
if ((*this).parallel(v)) return v.relation(s) == 3;
return 2;
} //两直线关系,0平行,1重合,2相交
Point crosspoint (Line v) {
double a1 = (v.e - v.s) ^ (s - v.s);
double a2 = (v.e - v.s) ^ (e - v.s);
return Point((s.x * a2 - e.x * a1) / (a2 - a1), (s.y * a2 - e.y * a1) / (a2 - a1));
} //两直线交点
double dispointtoline (Point p) {return fabs((p - s) ^ (e - s) / length());} //点到直线距离
double dispointtoseg (Point p) {
if (sgn((p - s) * (e - s)) < 0 || sgn((p - e) * (s - e)) < 0)
return min(p.distance(s), p.distance(e));
return dispointtoline(p);
} //点到线段距离
double dissegtosseg (Line v) {
return min(min(dispointtoseg(v.s), dispointtoseg(v.e)), min(v.dispointtoseg(s), v.dispointtoseg(e)));
} //线段到线段的距离
Point lineprog (Point p) {
return s + (((e - s) * ((e - s) * (p - s))) / ((e - s).len2()));
} //返回点p在直线上的投影
Point symmetrypoint (Point p) {
Point q = lineprog(p);
return Point(2 * q.x - p.x, 2 * q.y - p.y);
} //返回点p关于直线的对称点
};
标签:return,Point,double,sgn,计算,几何,operator,const,模板 来源: https://www.cnblogs.com/duoluoluo/p/15794729.html