其他分享
首页 > 其他分享> > PYTORCH笔记 actor-critic (A2C)

PYTORCH笔记 actor-critic (A2C)

作者:互联网

        理论知识见:强化学习笔记:Actor-critic_UQI-LIUWJ的博客-CSDN博客

由于actor-critic是policy gradient和DQN的结合,所以同时很多部分和policy network,DQN的代码部分很接近

pytorch笔记:policy gradient_UQI-LIUWJ的博客-CSDN博客

pytorch 笔记: DQN(experience replay)_UQI-LIUWJ的博客-CSDN博客

1 导入库 & 超参数

import gym
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import time

from torch.distributions import Categorical

GAMMA = 0.95 
#奖励折扣因子
LR = 0.01  
#学习率

EPISODE = 3000  
# 生成多少个episode
STEP = 3000 
# 一个episode里面最多多少步
TEST = 10  
# 每100步episode后进行测试,测试多少个

2 actor 部分

2.1 actor 基本类

class PGNetwork(nn.Module):
    def __init__(self, state_dim, action_dim):
        super(PGNetwork, self).__init__()
        self.fc1 = nn.Linear(state_dim, 20)
        self.fc2 = nn.Linear(20, action_dim)

    def forward(self, x):
        x = F.relu(self.fc1(x))
        action_scores = self.fc2(x)
        return F.softmax(action_scores,dim=1)
    #PGNetwork的作用是输入某一时刻的state向量,输出是各个action被采纳的概率
    #和policy gradient中的Policy一样

2.2 actor 类

2.2.1 __init__

class Actor(object):
    def __init__(self, env):  
        # 初始化
        
        self.state_dim = env.observation_space.shape[0]
        #表示某一时刻状态是几个维度组成的
        #在推杆小车问题中,这一数值为4

        self.action_dim = env.action_space.n
        #表示某一时刻动作空间的维度(可以有几个不同的动作)
        #在推杆小车问题中,这一数值为2
        
        
        self.network = PGNetwork(
            state_dim=self.state_dim, 
            action_dim=self.action_dim)
        #输入S输出各个动作被采取的概率
        
        self.optimizer = torch.optim.Adam(self.network.parameters(), lr=LR)

2.2.2 选择动作

和policy gradient中的几乎一模一样

def choose_action(self, observation):
        # 选择动作,这个动作不是根据Q值来选择,而是使用softmax生成的概率来选
        #  在policy gradient和A2C中,不需要epsilon-greedy,因为概率本身就具有随机性
        observation =  torch.from_numpy(observation).float().unsqueeze(0)
        #print(state.shape)   
        #torch.size([1,4])
        #通过unsqueeze操作变成[1,4]维的向量
    
        probs = self.network(observation)
        #Policy的返回结果,在状态x下各个action被执行的概率
    
        m = Categorical(probs)      
        # 生成分布
         
        action = m.sample()           
        # 从分布中采样(根据各个action的概率)
    
        #print(m.log_prob(action))
        # m.log_prob(action)相当于probs.log()[0][action.item()].unsqueeze(0)
        #换句话说,就是选出来的这个action的概率,再加上log运算

         
        return action.item()         
        # 返回一个元素值
         
        '''
        所以每一次select_action做的事情是,选择一个合理的action,返回这个action;
        '''

2.2.3 学习actor 网络

也就是学习如何更好地选择action

 

neg_log_prob 在后续的critic中会有计算的方法,相当于

 def learn(self, state, action, td_error):

        observation =  torch.from_numpy(state).float().unsqueeze(0)
        
        softmax_input = self.network(observation)
        #各个action被采取的概率

        action = torch.LongTensor([action])
        neg_log_prob = F.cross_entropy(input=softmax_input, target=action)

        # 反向传播(梯度上升)
        # 这里需要最大化当前策略的价值
        #因此需要最大化neg_log_prob * tf_error,即最小化-neg_log_prob * td_error
        loss_a = -neg_log_prob * td_error
        
        self.optimizer.zero_grad()
        loss_a.backward()
        self.optimizer.step()
        #pytorch 老三样

3 critic部分

根据actor的采样,用TD的方式计算V(s)

为了方便起见,这里没有使用target network以及experience relay,这两个可以看DQN 的pytorch代码,里面有涉及

3.1 critic 基本类

class QNetwork(nn.Module):
    def __init__(self, state_dim, action_dim):
        super(QNetwork, self).__init__()
        self.fc1 = nn.Linear(state_dim, 20)
        self.fc2 = nn.Linear(20, 1)   
        # 这个地方和之前略有区别,输出不是动作维度,而是一维
        #因为我们这里需要计算的是V(s),而在DQN中,是Q(s,a),所以那里是两维,这里是一维

    def forward(self, x):
        out = F.relu(self.fc1(x))
        out = self.fc2(out)
        return out

3.2 Critic类

3.2.1 __init__

class Critic(object):
    #通过采样数据,学习V(S)
    def __init__(self, env):
       
        self.state_dim = env.observation_space.shape[0]
        #表示某一时刻状态是几个维度组成的
        #在推杆小车问题中,这一数值为4

        self.action_dim = env.action_space.n
        #表示某一时刻动作空间的维度(可以有几个不同的动作)
        #在推杆小车问题中,这一数值为2
        
      
        self.network = QNetwork(
                state_dim=self.state_dim, 
                action_dim=self.action_dim)
        #输入S,输出V(S)
        
        self.optimizer = torch.optim.Adam(self.network.parameters(), lr=LR)
        self.loss_func = nn.MSELoss()

3.2.2  训练critic 网络

def train_Q_network(self, state, reward, next_state):
        #类似于DQN的5.4,不过这里没有用fixed network,experience relay的机制

        s, s_ = torch.FloatTensor(state), torch.FloatTensor(next_state)
        #当前状态,执行了action之后的状态

        v = self.network(s)     # v(s)
        v_ = self.network(s_)   # v(s')

        # 反向传播
        loss_q = self.loss_func(reward + GAMMA * v_, v)
        #TD
        ##r+γV(S') 和V(S) 之间的差距
        
        self.optimizer.zero_grad()
        loss_q.backward()
        self.optimizer.step()
        #pytorch老三样

        with torch.no_grad():
            td_error = reward + GAMMA * v_ - v
        #表示不把相应的梯度传到actor中(actor和critic是独立训练的)
        

        return td_error

4 主函数

def main():
    env = gym.make('CartPole-v1')
    #创建一个推车杆的gym环境

    actor = Actor(env)
    critic = Critic(env)

    for episode in range(EPISODE):
        state = env.reset()
        #state表示初始化这一个episode的环境

        for step in range(STEP):
            action = actor.choose_action(state)  
            # 根据actor选择action

            
            next_state, reward, done, _ = env.step(action)
            #四个返回的内容是state,reward,done(是否重置环境),info
            
            td_error = critic.train_Q_network(
                state, 
                reward, 
                next_state)  
            # gradient = grad[r + gamma * V(s_) - V(s)]
            #先根据采样的action,当前状态,后续状态,训练critic,以获得更准确的V(s)值
            
            
            actor.learn(state, action, td_error)  
            # true_gradient = grad[logPi(a|s) * td_error]
            #然后根据前面学到的V(s)值,训练actor,以更好地采样动作

            state = next_state
            if done:
                break

        # 每100步测试效果
        if episode % 100 == 0:
            total_reward = 0
            for i in range(TEST):
                state = env.reset()
                for j in range(STEP):
                    #env.render()
                    #渲染环境,如果你是在服务器上跑的,只想出结果,不想看动态推杆过程的话,可以注释掉

                    action = actor.choose_action(state)  
                    #采样了一个action
                    
                    state, reward, done, _ = env.step(action)
                    #四个返回的内容是state,reward,done(是否重置环境),info
                    total_reward += reward
                    if done:
                        break
            ave_reward = total_reward/TEST
            print('episode: ', episode, 'Evaluation Average Reward:', ave_reward)


if __name__ == '__main__':
    time_start = time.time()
    main()
    time_end = time.time()
    print('Total time is ', time_end - time_start, 's')



'''
episode:  0 Evaluation Average Reward: 17.2
episode:  100 Evaluation Average Reward: 10.6
episode:  200 Evaluation Average Reward: 11.4
episode:  300 Evaluation Average Reward: 10.7
episode:  400 Evaluation Average Reward: 9.3
episode:  500 Evaluation Average Reward: 9.5
episode:  600 Evaluation Average Reward: 9.5
episode:  700 Evaluation Average Reward: 9.6
episode:  800 Evaluation Average Reward: 9.9
episode:  900 Evaluation Average Reward: 8.9
episode:  1000 Evaluation Average Reward: 9.3
episode:  1100 Evaluation Average Reward: 9.8
episode:  1200 Evaluation Average Reward: 9.3
episode:  1300 Evaluation Average Reward: 9.0
episode:  1400 Evaluation Average Reward: 9.4
episode:  1500 Evaluation Average Reward: 9.3
episode:  1600 Evaluation Average Reward: 9.1
episode:  1700 Evaluation Average Reward: 9.0
episode:  1800 Evaluation Average Reward: 9.6
episode:  1900 Evaluation Average Reward: 8.8
episode:  2000 Evaluation Average Reward: 9.4
episode:  2100 Evaluation Average Reward: 9.2
episode:  2200 Evaluation Average Reward: 9.4
episode:  2300 Evaluation Average Reward: 9.2
episode:  2400 Evaluation Average Reward: 9.3
episode:  2500 Evaluation Average Reward: 9.5
episode:  2600 Evaluation Average Reward: 9.6
episode:  2700 Evaluation Average Reward: 9.2
episode:  2800 Evaluation Average Reward: 9.1
episode:  2900 Evaluation Average Reward: 9.6
Total time is  41.6014940738678 s
'''

标签:episode,state,self,PYTORCH,critic,A2C,action,Reward,Average
来源: https://blog.csdn.net/qq_40206371/article/details/122446569