其他分享
首页 > 其他分享> > 【23考研复习】导数的概念

【23考研复习】导数的概念

作者:互联网

$$\large{第五章:导数的概念}$$

例题1:\(设函数y=f(x)在x=0点连续,且\lim\limits_{x\to0}\frac{f(x)+2}{x}=3,问函数f(x)在x=0点是否可导?若可导,求f'(0).\)(复习全书p58例6)
例题2:\(下列函数中,在x=0处不可导的是(D)\)(复习全书p59例8)
\((A)f(x)=|x|\sin{|x|}\)
\((B)f(x)=|x|\sin{\sqrt{|x|}}\)
\((C)f(x)=\cos{|x|}\)
\((D)f(x)=\cos{\sqrt{|x|}}\)
例题3:\(设函数f(x)=|x^3-1|φ(x),其中φ(x)在x=1处连续,则φ(1)=0是f(x)在x=1处可导的(A)\)(复习全书p60例11)
(A)充分必要条件 (B)必要非充分条件 (C)充分非必要条件 (D)不充分不必要条件
例题4:\(求\lim\limits_{x\to\infty}n[f(x_0-\frac{1}{n})-f(x_0+\frac{1}{2n})]的值\)(复习全书p61例13(4))
例题5:\(设曲线y=f(x)与y=x^2-x在点(1,0)处有公共切线,则\lim\limits_{x\to\infty}nf(\frac{n}{n+2})的值为多少\)(复习全书p62例16)
例题5:\(设\lim\limits_{x\to{a}}\frac{f(x)-a}{x-a}=b,则求\lim\limits_{x\to{a}}\frac{\sin{f(x)}-\sin{a}}{x-a}\)(复习全书p62例17)
(A)bsina (B)bcosa (C)bsin(f(a))(D)bcos(f(a))
例题6:\(设f'(6)存在,则\lim\limits_{x\to2}\frac{f(2+2x)-f(6)}{x^2-4}=5,则f'(6)的值为?\)(复习全书p63例19)

标签:frac,复习,limits,23,lim,例题,全书,考研
来源: https://www.cnblogs.com/Anonytt/p/15759162.html