二分查找
作者:互联网
二分查找(折半查找)
算法效率分析:时间复杂度、空间复杂度
平均时间复杂度:O(n);
空间复杂度:O(1);
前提:数组元素有序
代码实现:
1,main函数内实现:
int main()
{
int array[MAX] = { 1,2,3,5,6,7,8,9,10,11,12 };
int length = sizeof(array) / sizeof(array[0])-1;//减1!!
int right = array[length];
int left = 0;//int left = array[0]不对,我们现在要的是下标不是下标对应的值
int num;//num是要判断的值
scanf("%d",&num);
int MidIndex;
while(left<=right)
{
MidIndex = (left + right)/2;
if (array[MidIndex] == num)//不是数组下标的比较MidIndex == num
{
printf("该数已找到!");
break;
}
else if (array[MidIndex] < num)
{
left = MidIndex + 1;
}
else
{
right = MidIndex - 1;
}
if (right >= left)
{
printf("该数不存在");
break;
}
}
}
2,函数封装(递归实现)
int BinarySearch0(int *arr,int length,int left,int right,int value)
{
if (left > right)
return -1;//不存在该数据
int mid = ((right - left) >> 1 + left); //位运算优化
if (arr[mid] == value)
return mid;
if (arr[mid] > value)//往小的那边即左边走
return BinarySearch0(int* arr, int length, left, mid - 1, value);
else//往大的那边即右边走
return BinarySearch0(int* arr, int length, mid+1, left, value);
}
void BinarySearch(int *arr,int length,int value){
int left = 0, right = len - 1;
//封装范围
int index = BinarySearch0(arr, length, left, right,value);
return index;
}
int main() {
int arr[] = { 1,2,3,4,5 };
int len = strlen(arr);
BinarySearch(arr, len);
return 0;
}
标签:二分,arr,right,int,MidIndex,查找,array,left 来源: https://blog.csdn.net/qq_53830608/article/details/121877884