其他分享
首页 > 其他分享> > 【深度学习笔记】4.前馈神经网络

【深度学习笔记】4.前馈神经网络

作者:互联网

前馈神经网络

发展历程

avatar

神经元(M-P)

神经元是1943年由两名科学家首次提出的神经元模型。

avatar

在M-P模型中,神经元接受其他n个神经元的输入信号(0或1),这些输入信号经过权重加权并求和,将求和结果与阈值(threshold) θ 比较,然后经过激活函数处理,得到神经元的输出。
y = ∑ i = 1 n ω i j x i + θ y=\sum^n_{i=1}\omega_{ij}x_i+\theta y=i=1∑n​ωij​xi​+θ
M-P 模型可以表示多种逻辑运算,如取反运算、逻辑或、逻辑与。

avatar avatar

网络结构

人工神经网络由神经元模型构成,这种由许多神经元组成的信息处理网络具有并行分布结构。

avatar

感知器

单层感知器

1958年科学家提出了感知器。它与M-P不同的是可以通过训练自动的确认参数。其训练方式是监督学习,通过实际输出与整体期望之差来修正模型参数。
w i ← w i + α ( r − y ) x θ ← θ − α ( r − y ) \begin{aligned} w_{i} & \leftarrow w_{i}+\alpha(r-y) x \\ \theta & \leftarrow \theta-\alpha(r-y) \end{aligned} wi​θ​←wi​+α(r−y)x←θ−α(r−y)​
感知器权重调整的基本思路就是:假设输出y与期望r不相等,则调整权重和参数

avatar

其训练过程如下:

avatar

多层感知器

多层感知器就是基于单层感知器的扩充,使其可以解决线性不可分的问题(无法用一个线性模型进行分类)。

avatar

多层感知器指的是由多层结构的感知器递阶组成的输入值向前传播的网络,也被称为前馈网络或正向传播网络。

以三层结构的多层感知器为例,它由输入层、中间层及输出层组成

avatar

BP算法

多层感知器的训练使用误差反向传播算法(Error Back Propagation),即BP算法。BP算法最早有沃博斯于1974年提出,鲁梅尔哈特等人进一步发展了该理论。

BP算法的基本过程

BP算法就是通过比较实际输出和期望输出得到误差信号,把误差信 号从输出层逐层向前传播得到各层的误差信号,再通过调整各层的连接权重以减小误差。权重的调整主要使用梯度下降法:
Δ w = − α ∂ E ∂ w \Delta w = -\alpha \frac{\partial E}{\partial w} Δw=−α∂w∂E​

激活函数

激活函数在神经网络中充当神经元的角色,将求和后的值传入激活函数中然后进行下一步计算。

在M-P模型中,用阶跃函数作为激活函数,但该函数不连续且不可导。所以后续提出了Sigmoid作为新的激活函数进行替代

avatar

其中Sigmoid的导数为
d f ( u ) d u = f ( u ) ( 1 − f ( u ) ) \frac{df(u)}{du}=f(u)(1-f(u)) dudf(u)​=f(u)(1−f(u))
avatar

当然,除了Sigmoid以外,常用的激活函数也有很多。当中最出名的就有ReLu和tanh

avatar

BP算法示例

下面以一个中间层(最简单的网络)为例,w是输入层与中间层之间的权重。

avatar

∂ E ∂ w 2 j 1 = ∂ E ∂ y ∂ y ∂ u 21 ∂ u 21 ∂ w 2 j 1 = − ( r − y ) y ( 1 − y ) z j \begin{array}{c}\frac{\partial E}{\partial w_{2 j 1}} =\frac{\partial E}{\partial y} \frac{\partial y}{\partial u_{21}} \frac{\partial u_{21}}{\partial w_{2 j 1}} \\ =-(r-y) y(1-y) z_{j}\end{array} ∂w2j1​∂E​=∂y∂E​∂u21​∂y​∂w2j1​∂u21​​=−(r−y)y(1−y)zj​​

这里 z j z_j zj​代表中间层的值

Δ w 2 j 1 = α ( r − y ) y ( 1 − y ) z j Δw2j1=α(r−y)y(1−y)z j Δw2j1=α(r−y)y(1−y)zj

∂ E ∂ w 2 j 1 = ∂ E ∂ y ∂ y ∂ u 21 ∂ u 21 ∂ w 2 j 1 = − ( r − y ) y ( 1 − y ) z j \frac{∂E}{∂_{w2j1}}=\frac{∂E}{∂y}\frac{∂y}{∂u21}\frac{∂u21}{∂w2j1}=-(r-y)y(1-y)z_j ∂w2j1​∂E​=∂y∂E​∂u21∂y​∂w2j1∂u21​=−(r−y)y(1−y)zj​

中间层到输出层

avatar

输入层到中间层

avatar

优化问题

难点

需求

非凸优化问题

avatar

梯度消失问题

avatar

标签:输出,感知器,partial,前馈,笔记,w2j1,神经网络,中间层,frac
来源: https://blog.csdn.net/turkeym4/article/details/121518425