其他分享
首页 > 其他分享> > 关于圆周率

关于圆周率

作者:互联网

关于圆周率

圆周率为什么是一个定值

  我们都知道,圆周率是一个圆的周长与直径的比值,我们在这里介绍一种利用数列极限来证明圆周率收敛于 π \pi π。

  设单位圆内接正 n n n 边形的周长为 L n L_n Ln​ ,则 L n = n s i n 18 0 ∘ n L_n = nsin\frac{180^\circ}{n} Ln​=nsinn180∘​。数列 L n L_n Ln​ 应该收敛与单位元的半周长,及圆周率 π \pi π 。现在我们来严格证明这一点。

  证明:令 t = 18 0 ∘ n ( n + 1 ) t = \frac{180^\circ}{n(n+1)} t=n(n+1)180∘​,则当 n ≥ 3 n \geq 3 n≥3 的时候, n t ≤ 4 5 ∘ nt \leq 45^\circ nt≤45∘,且
tan ⁡ n t = tan ⁡ ( ( n − 1 ) t + t ) = tan ⁡ ( n − 1 ) t + tan ⁡ t 1 − tan ⁡ ( n − 1 ) t tan ⁡ t ≥ tan ⁡ ( n − 1 ) t + tan ⁡ t \tan nt = \tan \left((n-1)t + t\right) = \frac{\tan (n-1)t + \tan t}{1-\tan (n-1)t \tan t} \geq \tan(n-1)t + \tan t tannt=tan((n−1)t+t)=1−tan(n−1)ttanttan(n−1)t+tant​≥tan(n−1)t+tant
  同理:
tan ⁡ ( n − 1 ) t ≥ tan ⁡ ( n − 2 ) t + tan ⁡ t , tan ⁡ ( n − 2 ) t ≥ tan ⁡ ( n − 3 ) t + tan ⁡ t , ⋯ \tan (n-1)t \geq \tan(n-2)t + \tan t,\tan(n-2)t \geq \tan(n-3)t + \tan t,\cdots tan(n−1)t≥tan(n−2)t+tant,tan(n−2)t≥tan(n−3)t+tant,⋯
  所以:
tan ⁡ n t ≥ tan ⁡ ( n − 1 ) t + tan ⁡ t ≥ tan ⁡ ( n − 2 ) t + 2 tan ⁡ t ≥ ⋯ ≥ n tan ⁡ t \tan nt \geq \tan (n-1)t + \tan t \geq \tan (n-2)t + 2\tan t \geq \cdots \geq n\tan t tannt≥tan(n−1)t+tant≥tan(n−2)t+2tant≥⋯≥ntant
  故
sin ⁡ ( n + 1 ) t = sin ⁡ n t cos ⁡ t + cos ⁡ n t sin ⁡ t = sin ⁡ n t cos ⁡ t × ( cos ⁡ n t sin ⁡ t sin ⁡ n t cos ⁡ t ) = sin ⁡ n t cos ⁡ t × ( 1 + tan ⁡ t tan ⁡ n t ) ∵ tan ⁡ n t ≥ n tan ⁡ t → t a n t tan ⁡ n t ≤ tan ⁡ t n tan ⁡ t = 1 n ∴ s i n ( n + 1 ) t ≤ sin ⁡ n t cos ⁡ t × ( 1 + 1 n ) = sin ⁡ n t cos ⁡ t × n + 1 n ≤ n + 1 n sin ⁡ n t ∴ n sin ⁡ ( n + 1 ) t ≤ ( n + 1 ) sin ⁡ n t \begin{aligned} \sin (n+1)t = & \sin nt \cos t + \cos nt \sin t \\ = & \sin nt \cos t \times \left( \frac{\cos nt \sin t}{\sin nt \cos t} \right) = \sin nt \cos t\times\left(1 + \frac{\tan t}{\tan nt} \right)\\ \\ \because \tan nt \geq n \tan &t \rightarrow \frac{tant}{\tan nt} \leq \frac{\tan t}{n\tan t} = \frac{1}{n} \\ \\ \therefore sin(n+1)t &\leq \sin nt \cos t \times (1 + \frac{1}{n}) = \sin nt \cos t \times \frac{n+1}{n} \leq \frac{n+1}{n}\sin nt \\ \\ \therefore n \sin (n+1)t& \leq (n+1)\sin nt \end{aligned} sin(n+1)t==∵tannt≥ntan∴sin(n+1)t∴nsin(n+1)t​sinntcost+cosntsintsinntcost×(sinntcostcosntsint​)=sinntcost×(1+tannttant​)t→tannttant​≤ntanttant​=n1​≤sinntcost×(1+n1​)=sinntcost×nn+1​≤nn+1​sinnt≤(n+1)sinnt​

  因此,当 n ≥ 3 n \geq 3 n≥3 的时候:
L n = n sin ⁡ 18 0 ∘ n ≤ ( n + 1 ) sin ⁡ 18 0 ∘ n + 1 = L n + 1 L_n = n \sin \frac{180^\circ}{n} \leq (n+1)\sin\frac{180^\circ}{n+1} = L_{n+1} Ln​=nsinn180∘​≤(n+1)sinn+1180∘​=Ln+1​

  又因为,单位圆内接正 n n n 边形的面积:

S n = n sin ⁡ 18 0 ∘ n cos ⁡ 18 0 ∘ n < 4 ∴ n sin ⁡ 18 0 ∘ n < 4 cos ⁡ 18 0 ∘ n \begin{aligned} S_n = n\sin\frac{180^\circ}{n} \cos\frac{180^\circ}{n} < 4 \\ \\ \therefore n\sin \frac{180^\circ}{n} < \frac{4}{\cos\frac{180^\circ}{n}} \end{aligned} Sn​=nsinn180∘​cosn180∘​<4∴nsinn180∘​<cosn180∘​4​​

  所以当 n ≥ 3 n \geq 3 n≥3 的时候

L n = n sin ⁡ 18 0 ∘ n < 4 cos ⁡ 18 0 ∘ n ≤ 4 cos ⁡ 6 0 ∘ = 8 L_n = n\sin \frac{180^\circ}{n} < \frac{4}{\cos \frac{180^\circ}{n}} \leq \frac{4}{\cos 60^\circ} = 8 Ln​=nsinn180∘​<cosn180∘​4​≤cos60∘4​=8

  综上所述,数列 { n sin ⁡ 18 0 ∘ n } \lbrace n \sin \frac{180^\circ}{n} \rbrace {nsinn180∘​} 单调增且有上界,所以它是收敛的,这个极限就是圆周率 π \pi π,即:
lim ⁡ n → ∞ n sin ⁡ 18 0 ∘ n = π \lim_{n \to \infty}n \sin \frac{180^\circ}{n} = \pi n→∞lim​nsinn180∘​=π

圆周率的一种无穷级数展开

tan ⁡ π 4 = 1 → π = 4 arctan ⁡ ( 1 ) \begin{aligned} & \tan \frac \pi 4 = 1 \rightarrow \pi = 4 \arctan(1) \\ \\ \end{aligned} ​tan4π​=1→π=4arctan(1)​

  令 f ( x ) = arctan ⁡ ( x ) f(x) = \arctan(x) f(x)=arctan(x),则 f ′ ( x ) = 1 1 + x 2 f'(x) = \frac 1 {1+x^2} f′(x)=1+x21​。令 g ( t ) = 1 1 + t g(t) = \frac 1 {1+t} g(t)=1+t1​,则:

g ( n ) ( t ) = ( − 1 ) n ⋅ n ! ( t + 1 ) − n − 1 ∴ g ( n ) ( 0 ) = ( − 1 ) n ⋅ n ! \begin{aligned} g^{(n)}(t) = (-1)^n \cdot n! (t + 1)^{-n-1} \quad \therefore g^{(n)}(0) = (-1)^n \cdot n! \end{aligned} g(n)(t)=(−1)n⋅n!(t+1)−n−1∴g(n)(0)=(−1)n⋅n!​
  把 g ( t ) g(t) g(t) 在零点泰勒展开:

g ( t ) = ∑ n = 0 ∞ ( − 1 ) n ⋅ t n g(t) = \sum_{n = 0}^{\infty} (-1)^n \cdot t^n g(t)=n=0∑∞​(−1)n⋅tn

  所以:
f ′ ( x ) = 1 1 + x 2 = g ( x 2 ) = ∑ n = 0 ∞ ( − 1 ) n ⋅ x 2 n f'(x) = \frac 1 {1 + x^2} = g(x^2) = \sum_{n=0}^{\infty} (-1)^n \cdot x ^{2n} f′(x)=1+x21​=g(x2)=n=0∑∞​(−1)n⋅x2n

  对这个式子求定积分得到原函数:

f ( x ) − f ( 0 ) = f ( x ) = ∫ 0 x ∑ n = 0 ∞ ( − 1 ) n ⋅ z 2 n d z = ∑ n = 0 ∞ ( − 1 ) n ∫ 0 x z 2 n d z = ∑ n = 0 ∞ ( − 1 ) n ⋅ x 2 n + 1 2 n + 1 ∴ f ( 1 ) = ∑ n = 0 ∞ ( − 1 ) n ⋅ 1 2 n + 1 \begin{aligned} f(x) - f(0) = &f(x) = \int_0^x \sum_{n=0}^{\infty}(-1)^n \cdot z^{2n}dz \\ = &\sum_{n=0}^{\infty} (-1)^n \int_0^x z^{2n}dz = \sum_{n=0}^\infty (-1)^n \cdot \frac{x^{2n+1}}{2n+1} \\ \\ \therefore f(1) = \sum_{n=0}^\infty (-1)^n &\cdot \frac{1}{2n+1} \end{aligned} f(x)−f(0)==∴f(1)=n=0∑∞​(−1)n​f(x)=∫0x​n=0∑∞​(−1)n⋅z2ndzn=0∑∞​(−1)n∫0x​z2ndz=n=0∑∞​(−1)n⋅2n+1x2n+1​⋅2n+11​​
  综上所述:
π = 4 × ( 1 − 1 3 + 1 5 − 1 7 + 1 9 − ⋯   ) \pi = 4 \times (1 - \frac 1 3 + \frac 1 5 - \frac 1 7 + \frac 1 9 - \cdots) π=4×(1−31​+51​−71​+91​−⋯)

标签:cos,frac,圆周率,geq,关于,tan,nt,sin
来源: https://blog.csdn.net/ID246783/article/details/121085904