PCL平面检测SAC
作者:互联网
采用随机采样的方法进行平面检测,代码如下:
#include <pcl/PCLPointCloud2.h>
#include <pcl/io/pcd_io.h>
#include <pcl/sample_consensus/ransac.h>
#include <pcl/sample_consensus/sac_model_plane.h>
#include <pcl/segmentation/extract_clusters.h>
#include <pcl/console/print.h>
#include <pcl/console/parse.h>
#include <pcl/console/time.h>
using namespace std;
using namespace pcl;
using namespace pcl::io;
using namespace pcl::console;
int default_max_iterations = 1000;
double default_threshold = 0.05;
bool default_negative = false;
Eigen::Vector4f translation;
Eigen::Quaternionf orientation;
void
printHelp (int, char **argv)
{
print_error ("Syntax is: %s input.pcd output.pcd <options> [optional_arguments]\n", argv[0]);
print_info (" where options are:\n");
print_info (" -thresh X = set the inlier threshold from the plane to (default: ");
print_value ("%g", default_threshold); print_info (")\n");
print_info (" -max_it X = set the maximum number of RANSAC iterations to X (default: ");
print_value ("%d", default_max_iterations); print_info (")\n");
print_info (" -neg 0/1 = if true (1), instead of the plane, it returns the largest cluster on top of the plane (default: ");
print_value ("%s", default_negative ? "true" : "false"); print_info (")\n");
print_info ("\nOptional arguments are:\n");
print_info (" -input_dir X = batch process all PCD files found in input_dir\n");
print_info (" -output_dir X = save the processed files from input_dir in this directory\n");
}
bool
loadCloud (const string &filename, pcl::PCLPointCloud2 &cloud)
{
TicToc tt;
print_highlight ("Loading "); print_value ("%s ", filename.c_str ());
tt.tic ();
if (loadPCDFile (filename, cloud, translation, orientation) < 0)
return (false);
print_info ("[done, "); print_value ("%g", tt.toc ()); print_info (" ms : "); print_value ("%d", cloud.width * cloud.height); print_info (" points]\n");
print_info ("Available dimensions: "); print_value ("%s\n", getFieldsList (cloud).c_str ());
return (true);
}
void
compute (const pcl::PCLPointCloud2::ConstPtr &input, pcl::PCLPointCloud2 &output,
int max_iterations = 1000, double threshold = 0.05, bool negative = false)
{
// Convert data to PointCloud<T>
PointCloud<PointXYZ>::Ptr xyz (new PointCloud<PointXYZ>);
fromPCLPointCloud2 (*input, *xyz);
// Estimate
TicToc tt;
print_highlight (stderr, "Computing ");
tt.tic ();
// Refine the plane indices
typedef SampleConsensusModelPlane<PointXYZ>::Ptr SampleConsensusModelPlanePtr;
SampleConsensusModelPlanePtr model (new SampleConsensusModelPlane<PointXYZ> (xyz));
RandomSampleConsensus<PointXYZ> sac (model, threshold);
sac.setMaxIterations (max_iterations);
bool res = sac.computeModel ();
vector<int> inliers;
sac.getInliers (inliers);
Eigen::VectorXf coefficients;
sac.getModelCoefficients (coefficients);
if (!res || inliers.empty ())
{
PCL_ERROR ("No planar model found. Relax thresholds and continue.\n");
return;
}
sac.refineModel (2, 50);
sac.getInliers (inliers);
sac.getModelCoefficients (coefficients);
print_info ("[done, "); print_value ("%g", tt.toc ()); print_info (" ms, plane has : "); print_value ("%lu", inliers.size ()); print_info (" points]\n");
print_info ("Model coefficients: [");
print_value ("%g %g %g %g", coefficients[0], coefficients[1], coefficients[2], coefficients[3]); print_info ("]\n");
// Instead of returning the planar model as a set of inliers, return the outliers, but perform a cluster segmentation first
if (negative)
{
// Remove the plane indices from the data
PointIndices::Ptr everything_but_the_plane (new PointIndices);
std::vector<int> indices_fullset (xyz->size ());
for (int p_it = 0; p_it < static_cast<int> (indices_fullset.size ()); ++p_it)
indices_fullset[p_it] = p_it;
std::sort (inliers.begin (), inliers.end ());
set_difference (indices_fullset.begin (), indices_fullset.end (),
inliers.begin (), inliers.end (),
inserter (everything_but_the_plane->indices, everything_but_the_plane->indices.begin ()));
// Extract largest cluster minus the plane
vector<PointIndices> cluster_indices;
EuclideanClusterExtraction<PointXYZ> ec;
ec.setClusterTolerance (0.02); // 2cm
ec.setMinClusterSize (100);
ec.setInputCloud (xyz);
ec.setIndices (everything_but_the_plane);
ec.extract (cluster_indices);
// Convert data back
copyPointCloud (*input, cluster_indices[0].indices, output);
}
else
{
// Convert data back
PointCloud<PointXYZ> output_inliers;
copyPointCloud (*input, inliers, output);
}
}
void
saveCloud (const string &filename, const pcl::PCLPointCloud2 &output)
{
TicToc tt;
tt.tic ();
print_highlight ("Saving "); print_value ("%s ", filename.c_str ());
PCDWriter w;
w.writeBinaryCompressed (filename, output, translation, orientation);
print_info ("[done, "); print_value ("%g", tt.toc ()); print_info (" ms : "); print_value ("%d", output.width * output.height); print_info (" points]\n");
}
int
batchProcess (const vector<string> &pcd_files, string &output_dir, int max_it, double thresh, bool negative)
{
vector<string> st;
for (size_t i = 0; i < pcd_files.size (); ++i)
{
// Load the first file
pcl::PCLPointCloud2::Ptr cloud (new pcl::PCLPointCloud2);
if (!loadCloud (pcd_files[i], *cloud))
return (-1);
// Perform the feature estimation
pcl::PCLPointCloud2 output;
compute (cloud, output, max_it, thresh, negative);
// Prepare output file name
string filename = pcd_files[i];
boost::trim (filename);
boost::split (st, filename, boost::is_any_of ("/\\"), boost::token_compress_on);
// Save into the second file
stringstream ss;
ss << output_dir << "/" << st.at (st.size () - 1);
saveCloud (ss.str (), output);
}
return (0);
}
/* ---[ */
int
main (int argc, char** argv)
{
print_info ("Estimate the largest planar component using SACSegmentation. For more information, use: %s -h\n", argv[0]);
if (argc < 3)
{
printHelp (argc, argv);
return (-1);
}
bool debug = false;
console::parse_argument (argc, argv, "-debug", debug);
if (debug)
{
print_highlight ("Enabling debug mode.\n");
console::setVerbosityLevel (console::L_DEBUG);
if (!isVerbosityLevelEnabled (L_DEBUG))
PCL_ERROR ("Error enabling debug mode.\n");
}
bool batch_mode = false;
// Command line parsing
int max_it = default_max_iterations;
double thresh = default_threshold;
bool negative = default_negative;
parse_argument (argc, argv, "-max_it", max_it);
parse_argument (argc, argv, "-thresh", thresh);
parse_argument (argc, argv, "-neg", negative);
string input_dir, output_dir;
if (parse_argument (argc, argv, "-input_dir", input_dir) != -1)
{
PCL_INFO ("Input directory given as %s. Batch process mode on.\n", input_dir.c_str ());
if (parse_argument (argc, argv, "-output_dir", output_dir) == -1)
{
PCL_ERROR ("Need an output directory! Please use -output_dir to continue.\n");
return (-1);
}
// Both input dir and output dir given, switch into batch processing mode
batch_mode = true;
}
if (!batch_mode)
{
// Parse the command line arguments for .pcd files
vector<int> p_file_indices;
p_file_indices = parse_file_extension_argument (argc, argv, ".pcd");
if (p_file_indices.size () != 2)
{
print_error ("Need one input PCD file and one output PCD file to continue.\n");
return (-1);
}
print_info ("Estimating planes with a threshold of: ");
print_value ("%g\n", thresh);
print_info ("Planar model segmentation: ");
print_value ("%s\n", negative ? "false" : "true");
// Load the first file
pcl::PCLPointCloud2::Ptr cloud (new pcl::PCLPointCloud2);
if (!loadCloud (argv[p_file_indices[0]], *cloud))
return (-1);
// Perform the feature estimation
pcl::PCLPointCloud2 output;
compute (cloud, output, max_it, thresh, negative);
// Save into the second file
saveCloud (argv[p_file_indices[1]], output);
}
else
{
if (input_dir != "" && boost::filesystem::exists (input_dir))
{
vector<string> pcd_files;
boost::filesystem::directory_iterator end_itr;
for (boost::filesystem::directory_iterator itr (input_dir); itr != end_itr; ++itr)
{
// Only add PCD files
if (!is_directory (itr->status ()) && boost::algorithm::to_upper_copy (boost::filesystem::extension (itr->path ())) == ".PCD" )
{
pcd_files.push_back (itr->path ().string ());
PCL_INFO ("[Batch processing mode] Added %s for processing.\n", itr->path ().string ().c_str ());
}
}
batchProcess (pcd_files, output_dir, max_it, thresh, negative);
}
else
{
PCL_ERROR ("Batch processing mode enabled, but invalid input directory (%s) given!\n", input_dir.c_str ());
return (-1);
}
}
}
来源:PCL官方示例
标签:info,input,SAC,indices,PCL,output,print,平面,dir 来源: https://blog.csdn.net/com1098247427/article/details/120712741