其他分享
首页 > 其他分享> > 【解题报告】洛谷P6475 建设城市

【解题报告】洛谷P6475 建设城市

作者:互联网

【解题报告】洛谷P6475 建设城市

题目链接

https://www.luogu.com.cn/problem/P6475

思路

考虑排列组合

我们可以枚举一下两个楼房的高度,假设 \(x<n<y\) ,那么 \(x\) 左边有 \(x-1\) 个楼房,右边有 \(n-x\) 个楼房,我们设我们已经枚举 \(x\) 的高度到 \(i,1 \le i \le m\) ,然后左边 \(x-1\) 个楼房就可以从 \(i\) 个数字中选择递增的一段,也就是 \(C_{i}^{x-1}\) 。右边也是 \(m-i+1\) 个可选数字 我们可以选择一个递增的一段,也就是 \(C_{m-i+1}^{n-x}\) 。

同理,我们可以对 \(y\) 进行划分

两个答案是 \(C_{m-i+1}^{y-n-1}\) , \(C_i^{2n-y}\)

根据乘法原理,对于每个 \(i\) 的方案数量就是这四个数字相乘

答案加起来就好了

\[ans=\sum_{i=1}^m (C_{i}^{x-1} \times C_{m-i+1}^{n-x} \times C_{m-i+1}^{y-n-1}\times C_i^{2n-y}) \]

但是,这道题目的核心并不是分析这个,这个小学生都能分析出来吧

我们要做的最难得就是求组合数,这个组合数非常大,我们直接求肯定会炸掉吧

即使用杨辉三角形也会复杂度爆炸吧

所以,请循其本 \(C_n^m=\dfrac {n!} {m!(n-m)!}\)

我们用一个阶乘,然后利用在模意义下的逆元就好了啊,我们可以用费马小定理来求逆元吧

然后就没有然后了

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <string>
#define int long long 
using namespace std;
const int maxn=200005;
const int mod=998244353;
int m,n,x,y;
int ans;
int fac[maxn],ifac[maxn];
int ksm(int a,int b)
{
	int res=1%mod;
	while(b)
	{
		if(b&1)
		res=res%mod*a%mod;
		a=a%mod*a%mod;
		b>>=1;
	}
	return res%mod;
}
int C(int m,int n)
{
	return fac[n+m-1]*ifac[n]%mod*ifac[m-1]%mod;
}
signed main()
{
	cin>>m>>n>>x>>y;
	fac[0]=1;
	for(int i=1;i<=m+n;i++)
	fac[i]=fac[i-1]*i%mod;
	ifac[m+n]=ksm(fac[m+n],mod-2);
	for(int i=m+n-1;~i;i--)
	ifac[i]=ifac[i+1]*(i+1)%mod;
	if(x<=n&&y>n)
	{
		for(int i=1;i<=m;i++)
		ans=(ans%mod+C(i,x-1)%mod*C(m-i+1,n-x)%mod*C(m-i+1,y-n-1)%mod*C(i,2*n-y)%mod+mod)%mod;		
	}
	else
	ans=C(m,n)*C(m,n+x-y)%mod;
	cout<<ans<<'\n';
	return 0;
}

标签:洛谷,ifac,int,P6475,times,解题,fac,include,mod
来源: https://www.cnblogs.com/wweiyi2004/p/15426367.html