其他分享
首页 > 其他分享> > 深度学习-超参数调整总结

深度学习-超参数调整总结

作者:互联网

在深度神经网络中,超参数的调整是一项必备技能,通过观察在训练过程中的监测指标如损失loss和准确率来判断当前模型处于什么样的训练状态,及时调整超参数以更科学地训练模型能够提高资源利用率。在本研究中使用了以下超参数,下面将分别介绍并总结了不同超参数的调整规则。

(1)学习率

学习率(learning rate或作lr)是指在优化算法中更新网络权重的幅度大小。学习率可以是恒定的、逐渐降低的,基于动量的或者是自适应的。不同的优化算法决定不同的学习率。当学习率过大则可能导致模型不收敛,损失loss不断上下震荡;学习率过小则导致模型收敛速度偏慢,需要更长的时间训练。通常lr取值为[0.01,0.001,0.0001]

(2)批次大小batch_size

批次大小是每一次训练神经网络送入模型的样本数,在卷积神经网络中,大批次通常可使网络更快收敛,但由于内存资源的限制,批次过大可能会导致内存不够用或程序内核崩溃。bath_size通常取值为[16,32,64,128]

(3)优化器optimizer

目前Adam是快速收敛且常被使用的优化器。随机梯度下降(SGD)虽然收敛偏慢,但是加入动量Momentum可加快收敛,同时带动量的随机梯度下降算法有更好的最优解,即模型收敛后会有更高的准确性。通常若追求速度则用Adam更多。

(4)迭代次数

迭代次数是指整个训练集输入到神经网络进行训练的次数,当测试错误率和训练错误率相差较小时,可认为当前迭代次数合适;当测试错误率先变小后变大时则说明迭代次数过大了,需要减小迭代次数,否则容易出现过拟合。

(5)激活函数

在神经网络中,激活函数不是真的去激活什么,而是用激活函数给神经网络加入一些非线性因素,使得网络可以更好地解决较为复杂的问题。比如有些问题是线性可分的,而现实场景中更多问题不是线性可分的,若不使用激活函数则难以拟合非线性问题,测试时会有低准确率。所以激活函数主要是非线性的,如sigmoid、tanh、relu。sigmoid函数通常用于二分类,但要防止梯度消失,故适合浅层神经网络且需要配备较小的初始化权重,tanh函数具有中心对称性,适合于有对称性的二分类。在深度学习中,relu是使用最多的激活函数,简单又避免了梯度消失。

标签:总结,函数,迭代,神经网络,训练,参数,深度,激活,收敛
来源: https://blog.csdn.net/mao_hui_fei/article/details/120843417