其他分享
首页 > 其他分享> > P1096 $Hanoi$双塔问题

P1096 $Hanoi$双塔问题

作者:互联网

原题地址

题目描述

给定A、B、C三根足够长的细柱,在A柱上放有2n个中间有孔的圆盘,共有n个不同的尺寸,每个尺寸都有两个相同的圆盘,注意这两个圆盘是不加区分的(下图为n=3的情形)。

 

现要将这些圆盘移到CC柱上,在移动过程中可放在BB柱上暂存。要求:

(1)每次只能移动一个圆盘;

(2)A、B、C三根细柱上的圆盘都要保持上小下大的顺序;

任务:设An​为2n个圆盘完成上述任务所需的最少移动次数,对于输入的n,输出An​。

输入输出格式

输入格式:

 

一个正整数nn,表示在A柱上放有2n个圆盘。

 

输出格式:

 

一个正整数, 为完成上述任务所需的最少移动次数An​。

 

输入输出样例

输入样例#1: 
【输入样例1】
1
【输入样例2】
2
输出样例#1: 
【输出样例1】
2
【输出样例2】
6

说明

【限制】

对于50%的数据,1≤n≤25

对于100%的数据,1≤n≤200


 

思路

通过模拟1-5,你可以发现一个关系式a[i]=(2i-1)*2。

只需要将a数组求出即可(不需用数组,直接求a[i])。

数据n很大,去要用高精乘和高精加。


 

高精乘代码

    for(int i=1;i<=n+1;i++){
        for(int j=1;j<=a[0];j++){
            a[j]=a[j]*2+jw;
            jw=a[j]/10;
            a[j]=a[j]%10;
        }
        while(jw!=0){
            a[0]++;
            a[a[0]]=jw%10;
            jw=jw/10;
        }
    }

高精加代码

j=0;
    while(true){
        j++;
        a[j]=a[j]-2-qw;
        jw=0;
        while(a[j]<0){
            qw++;
            a[j]=a[j]+10;
        }
        if((j=a[0])||(qw=0)) break;
    }
    if(qw!=0){
        a[0]++;
        a[a[0]]=qw;
    }        

 


 

代码

#include<iostream>
#include<cstring>
using namespace std;
int n;
int a[1000];
int jw,qw,j;
int main(){
    cin>>n;
    a[0]=1;
    a[1]=1;
    
    for(int i=1;i<=n+1;i++){
        for(int j=1;j<=a[0];j++){
            a[j]=a[j]*2+jw;
            jw=a[j]/10;
            a[j]=a[j]%10;
        }
        while(jw!=0){
            a[0]++;
            a[a[0]]=jw%10;
            jw=jw/10;
        }
    }
    
    
    j=0;
    while(true){
        j++;
        a[j]=a[j]-2-qw;
        jw=0;
        while(a[j]<0){
            qw++;
            a[j]=a[j]+10;
        }
        if((j=a[0])||(qw=0)) break;
    }
    if(qw!=0){
        a[0]++;
        a[a[0]]=qw;
    }        
    for(int i=a[0];i>=1;i--)
        cout<<a[i];
    return 0;
} 

 

标签:圆盘,Hanoi,样例,int,双塔,P1096,2n,柱上,输入
来源: https://www.cnblogs.com/zhouxuanbodl/p/10388643.html