其他分享
首页 > 其他分享> > 稀疏矩阵

稀疏矩阵

作者:互联网

目录

稀疏矩阵

插播一期稀疏矩阵。

为什么稀疏矩阵

在实际应用中,矩阵大多时候都是稀疏的(例如大图的邻接矩阵),稀疏矩阵能减少存储空间,加快计算速度。

常用稀疏矩阵

1. coo:Coordinate matrix

采用三个数组,row,col,data,分别表示 行坐标,列坐标,和该坐标系下对应的值。下面的例子是用scipy.sparse创建coo稀疏矩阵。

>>> from scipy.sparse import coo_matrix
>>> row  = np.array([0, 3, 1, 0])
>>> col  = np.array([0, 3, 1, 2])
>>> data = np.array([4, 5, 7, 9])
>>> coo_matrix((data, (row, col)), shape=(4, 4)).toarray()
array([[4, 0, 9, 0],
       [0, 7, 0, 0],
       [0, 0, 0, 0],
       [0, 0, 0, 5]])

优点

缺点

2. csr和csc:Compressed Sparse Row/Column matrix

分别代表按行和按列的压缩方式。下面只介绍csr,csc和csr类似。

采用三个数组,data,indices,indptr,分别表示 数值,列号,和偏移量。对应的稠密矩阵的第\(i\) 行的数据表示为(python):

for i in range(len(indptr)-1):
    for j in range(indptr[i],indptr[i+1]):
		matrix[i][indices[j]] = data[j]

下面用scipy.sparse创建csr稀疏矩阵的例子:

>>> import numpy as np
>>> from scipy.sparse import csr_matrix
>>> indptr = np.array([0, 2, 3, 6])
>>> indices = np.array([0, 2, 2, 0, 1, 2])
>>> data = np.array([1, 2, 3, 4, 5, 6])
>>> csr_matrix((data, indices, indptr), shape=(3, 3)).toarray()
array([[1, 0, 2],
       [0, 0, 3],
       [4, 5, 6]])

优点

缺点

All conversions among the CSR, CSC, and COO formats are efficient, linear-time operations.

python中的scipy.sparse

支持的稀疏格式
矩阵格式 描述
bsr_matrix(arg1[, shape, dtype, copy, blocksize]) Block Sparse Row matrix
coo_matrix(arg1[, shape, dtype, copy]) A sparse matrix in COOrdinate format.
csc_matrix(arg1[, shape, dtype, copy]) Compressed Sparse Column matrix
csr_matrix(arg1[, shape, dtype, copy]) Compressed Sparse Row matrix
dia_matrix(arg1[, shape, dtype, copy]) Sparse matrix with DIAgonal storage
dok_matrix(arg1[, shape, dtype, copy]) Dictionary Of Keys based sparse matrix.
lil_matrix(arg1[, shape, dtype, copy]) Row-based list of lists sparse matrix
spmatrix([maxprint]) This class provides a base class for all sparse matrices.
常用api
API 描述
eye(m[, n, k, dtype, format]) Sparse matrix with ones on diagonal
identity(n[, dtype, format]) Identity matrix in sparse format
hstack(blocks[, format, dtype]) Stack sparse matrices horizontally (column wise)
vstack(blocks[, format, dtype]) Stack sparse matrices vertically (row wise)
random(m, n[, density, format, dtype, …]) Generate a sparse matrix of the given shape and density with randomly distributed values.
save_npz(file, matrix[, compressed]) Save a sparse matrix to a file using .npz format.
load_npz(file) Load a sparse matrix from a file using .npz format.
multiply(other) Point-wise multiplication by another matrix
power(n[, dtype]) This function performs element-wise power.
dot(other) Ordinary dot product

标签:matrix,dtype,矩阵,稀疏,shape,sparse
来源: https://www.cnblogs.com/clearhanhui/p/15347044.html