其他分享
首页 > 其他分享> > 【Hadoop MapReduce04】ReduceTask

【Hadoop MapReduce04】ReduceTask

作者:互联网

在这里插入图片描述
(1)Copy阶段:ReduceTask从各个MapTask上远程拷贝一片数据,并针对某一片数据,如果其大小超过一定阈值,则写到磁盘上,否则直接放到内存中。
(2)Merge阶段:在远程拷贝数据的同时,ReduceTask启动了两个后台线程对内存和磁盘上的文件进行合并,以防止内存使用过多或磁盘上文件过多。
(3)Sort阶段:按照MapReduce语义,用户编写reduce()函数输入数据是按key进行聚集的一组数据。为了将key相同的数据聚在一起,Hadoop采用了基于排序的策略。由于各个MapTask已经实现对自己的处理结果进行了局部排序,因此,ReduceTask只需对所有数据进行一次归并排序即可。
(4)Reduce阶段:reduce()函数将计算结果写到HDFS上。

1)设置ReduceTask并行度(个数)
ReduceTask的并行度同样影响整个Job的执行并发度和执行效率,但与MapTask的并发数由切片数决定不同,ReduceTask数量的决定是可以直接手动设置:
// 默认值是1,手动设置为4
job.setNumReduceTasks(4);
在这里插入图片描述

标签:ReduceTask,MapReduce04,Hadoop,MapTask,内存,磁盘,排序,数据
来源: https://blog.csdn.net/weixin_43589563/article/details/120498068