其他分享
首页 > 其他分享> > Leetcode 146. LRU 缓存机制

Leetcode 146. LRU 缓存机制

作者:互联网

前言

缓存是一种提高数据读取性能的技术,在计算机中cpu和主内存之间读取数据存在差异,CPU和主内存之间有CPU缓存,而且在内存和硬盘有内存缓存。当主存容量远大于CPU缓存,或磁盘容量远大于主存时,哪些数据应该被应该被清理,哪些数据应该被保留,这就需要缓存淘汰策略来决定。常见的策略有三种:先进先出策略FIFO(First In,First Out)、最少使用策略LFU(Least Frequently Used)、最近最少使用策略LRU(Least Recently Used)。

LRU描述

设计和实现一个  LRU (最近最少使用) 缓存机制 。
实现 LRUCache 类:

解题思路 哈希表 + 双向链表

class LRUCache {

    class DLinkedNode{
		int key;
		int value;
		DLinkedNode prev;
		DLinkedNode next;

		public DLinkedNode() {}

		public DLinkedNode(int key, int value) {
			this.key = key;
			this.value = value;
		}
	}

	private int size;

	private int capacity;

	private DLinkedNode head;

	private DLinkedNode tail;

	private Map<Integer,DLinkedNode> cache = new HashMap<>();

    public LRUCache(int capacity) {
        this.size = 0;
		this.capacity = capacity;
        head = new DLinkedNode();
		tail = new DLinkedNode();
		head.next = tail;
		tail.prev = head;
    }
    
    public int get(int key) {
        DLinkedNode node = cache.get(key);
		if (node == null) {
			return -1;
		}
		//找到并移动到首位
		moveToHead(node);
		return node.value;

    }
    
    public void put(int key, int value) {
        DLinkedNode node = cache.get(key);
		if (node == null) {
			//不存在就创建一个新的节点
			DLinkedNode newNode = new DLinkedNode(key,value);
			cache.put(key,newNode);
			addToHead(newNode);
			size++;
			if (size > capacity) {
				//超出容量,移除最后节点
				DLinkedNode tail = removeTail();
				cache.remove(tail.key);
				size--;
			}
		} else {
			//key存在,覆盖value,并移到头部
			if (node.value != value) {
				node.value = value;
			}
			moveToHead(node);

		}
    }

    private DLinkedNode removeTail() {
		DLinkedNode node = tail.prev;
		removeNode(node);
		return node;
	}

	private DLinkedNode removeNode(DLinkedNode node) {
		node.next.prev = node.prev;
		node.prev.next = node.next;
		return node;
	}

	private void moveToHead(DLinkedNode node) {
		removeNode(node);
		addToHead(node);
	}

	private void addToHead(DLinkedNode node) {
		node.prev = head;
		node.next = head.next;
        head.next.prev = node;
		head.next = node;
	}
}

参考

LRU维基百科
极客时间-王争-如何实现LRU缓存淘汰算法?

标签:146,node,缓存,int,DLinkedNode,value,LRU,key,Leetcode
来源: https://www.cnblogs.com/jeremylai7/p/15237719.html