其他分享
首页 > 其他分享> > 计算几何之凸包问题

计算几何之凸包问题

作者:互联网

文章目录

计算几何之凸包问题

POJ 1113 Wall

大意:

给出一个n边形的城堡,国王要求修建一个城墙,城墙到城堡的距离最少是L,问最少的城堡边长是多少,答案要求四舍五入到整数

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-sZDZslk1-1626497616145)(http://poj.org/images/1113/1113_1.gif)]

思路:

很容易想到求凸包,但是要求到城堡的距离最少是L,所以仅仅求凸包是不够的,观察图像可以发现,最优的方法是凸包的每条边向外移动L,然后用圆形填充缝隙即可,也就是说,最终答案 是凸包边长+半径为L的圆的周长。

剩下就是纯模板了,注意答案要四舍五入,直接

printf("%d\n",(int)(res+0.5));

即可.

#include <iostream>
#include <string.h>
#include <stdio.h>
#include <vector>
#include <map>
#include <queue>
#include <algorithm>
#include <math.h>
#include <cstdio>
#include <set>

using namespace std;

const int N = 20 + 5;
typedef long long LL;
int t, n;
double dis[100][100];
// 计算几何模板
const double eps = 1e-8;
const double inf = 1e20;
const double pi = acos(-1.0);
const int maxp = 1010;
// 和0做比较
int sgn(double x) {
    if (fabs(x) < eps) return 0;  // =0
    if (x < 0)
        return -1;  // < 0
    else
        return 1;  // > 0
}
// 计算x的平方
inline double sqr(double x) { return x * x; }

struct Point {
    double x, y;
    int index;
    Point() {}
    Point(double _x, double _y) {
        x = _x;
        y = _y;
    }
    void input() { scanf("%lf%lf", &x, &y); }
    void output() { printf("%.2f %.2f\n", x, y); }
    bool operator==(Point b) const {
        return sgn(x - b.x) == 0 && sgn(y - b.y) == 0;
    }
    bool operator<(Point b) const {
        return sgn(x - b.x) == 0 ? sgn(y - b.y) < 0 : x < b.x;
    }
    Point operator-(const Point &b) const { return Point(x - b.x, y - b.y); }
    Point operator+(const Point &b) const { return Point(x + b.x, y + b.y); }
    //叉积
    double operator^(const Point &b) const { return x * b.y - y * b.x; }
    //点积
    double operator*(const Point &b) const { return x * b.x + y * b.y; }
    //返回两点的距离
    double dist(Point p) { return hypot(x - p.x, y - p.y); }
     // 极角排序
    

};

struct Line {
    Point s, e;
    Line() {}
    // 两点确定一条线段
    Line(Point _s, Point _e) {
        s = _s;
        e = _e;
    }
    //返回点和直线(方向向量)关系
    // 1  在左侧; 2  在右侧; 3  在直线上
    int relation(Point p) {
        int c = sgn((p - s) ^ (e - s));
        if (c < 0)
            return 1;
        else if (c > 0)
            return 2;
        else
            return 3;
    }
    //两线段相交判断:规范相交:交点不在端点
    // 2 规范相交;1 非规范相交;0 不相交
     int segcrossseg(Line v) {
        int d1 = sgn((e - s) ^ (v.s - s));
        int d2 = sgn((e - s) ^ (v.e - s));
        int d3 = sgn((v.e - v.s) ^ (s - v.s));
        int d4 = sgn((v.e - v.s) ^ (e - v.s));
        if ((d1 ^ d2) == -2 && (d3 ^ d4) == -2) return 2;
        return (d1 == 0 && sgn((v.s - s) * (v.s - e)) <= 0) ||
               (d2 == 0 && sgn((v.e - s) * (v.e - e)) <= 0) ||
               (d3 == 0 && sgn((s - v.s) * (s - v.e)) <= 0) ||
               (d4 == 0 && sgn((e - v.s) * (e - v.e)) <= 0);
    }
    bool parallel(Line v) { return sgn((e - s) ^ (v.e - v.s)) == 0; }
    //求两直线的交点
    //要保证两直线不平行或重合
    Point crosspoint(Line v) {
        double a1 = (v.e - v.s) ^ (s - v.s);
        double a2 = (v.e - v.s) ^ (e - v.s);
        return Point((s.x * a2 - e.x * a1) / (a2 - a1),
                     (s.y * a2 - e.y * a1) / (a2 - a1));
    }
    double length() { return s.dist(e); }
    //点到直线的距离
    double dispointtoline(Point p) {
        return fabs((p - s) ^ (e - s)) / length();
    }
    //点到线段的距离
    double dispointtoseg(Point p) {
        if (sgn((p - s) * (e - s)) < 0 || sgn((p - e) * (s - e)) < 0)
            return min(p.dist(s), p.dist(e));
        return dispointtoline(p);
    }
    //直线和线段相交判断
    //-*this line   -v seg
    // 2 规范相交
    // 1 非规范相交
    // 0 不相交
    int linecrossseg(Line v) {
        int d1 = sgn((e - s) ^ (v.s - s));
        int d2 = sgn((e - s) ^ (v.e - s));
        if ((d1 ^ d2) == -2) return 2;
        return (d1 == 0 || d2 == 0);
    }
};

struct polygon {
    int n;
    Point p[maxp];
    Line l[maxp];
    // 输入多边形
    void input(int _n) {
        n = _n;
        for (int i = 0; i < n; i++) p[i].input();
    }
    // 加入一个点
    void add(Point q) { p[n++] = q; }
    // 得到多边形所有边的线段
    void getline() {
        for (int i = 0; i < n; i++) {
            l[i] = Line(p[i], p[(i + 1) % n]);
        }
    }
    // 极角排序
    struct cmp {
        Point p;
        cmp(const Point &p0) { p = p0; }
        bool operator()(const Point &aa, const Point &bb) {
            Point a = aa, b = bb;
            int d = sgn((a - p) ^ (b - p));
            if (d == 0) {
                return sgn(a.dist(p) - b.dist(p)) < 0;
            }
            return d > 0;
        }
    };
    // 进行极角排序
    // 首先需要找到最左下角的点
    // 需要重载号好Point的 < 操作符(min函数要用)
    void norm() {
        Point mi = p[0];
        for (int i = 1; i < n; i++)
            mi = min(mi, p[i]);  // min函数用Point的<重载
        sort(p, p + n, cmp(mi));
    }
    // 得到凸包
    // 得到的凸包里面的点编号是0 ~ n-1的
    // 两种凸包的方法
    // 注意如果有影响,要特判下所有点共点,或者共线的特殊情况
    void getconvex(polygon &convex) {
        sort(p, p + n);
        convex.n = n;
        for (int i = 0; i < min(n, 2); i++) {
            convex.p[i] = p[i];
        }
        if (convex.n == 2 && (convex.p[0] == convex.p[1])) convex.n--;  //特判
        if (n <= 2) return;
        int &top = convex.n;
        top = 1;
        for (int i = 2; i < n; i++) {
            while (top && sgn((convex.p[top] - p[i]) ^
                              (convex.p[top - 1] - p[i])) <= 0)
                top--;
            convex.p[++top] = p[i];
        }
        int temp = top;
        convex.p[++top] = p[n - 2];
        for (int i = n - 3; i >= 0; i--) {
            while (top != temp && sgn((convex.p[top] - p[i]) ^
                                      (convex.p[top - 1] - p[i])) <= 0)
                top--;
            convex.p[++top] = p[i];
        }
        if (convex.n == 2 && (convex.p[0] == convex.p[1])) convex.n--;  //特判
        convex.norm();  //`原来得到的是顺时针的点,排序后逆时针`
    }
    // 得到凸包的另外一种方法
    void Graham(polygon &convex) {
        norm();
        int &top = convex.n;
        top = 0;
        if (n == 1) {
            top = 1;
            convex.p[0] = p[0];
            return;
        }
        if (n == 2) {
            top = 2;
            convex.p[0] = p[0];
            convex.p[1] = p[1];
            if (convex.p[0] == convex.p[1]) top--;
            return;
        }
        convex.p[0] = p[0];
        convex.p[1] = p[1];
        top = 2;
        for (int i = 2; i < n; i++) {
            while (top > 1 && sgn((convex.p[top - 1] - convex.p[top - 2]) ^
                                  (p[i] - convex.p[top - 2])) <= 0)
                top--;
            convex.p[top++] = p[i];
        }
        if (convex.n == 2 && (convex.p[0] == convex.p[1])) convex.n--;  //特判
    }
    
    
    // 得到多边形的周长
    double getcircumference() {
        double sum = 0;
        for (int i = 0; i < n; i++) {
            sum += p[i].dist(p[(i + 1) % n]);
        }
        return sum;
    }
    
};
double d;
polygon P;
int main(){
    cin >> n >> d;
    for (int i = 0; i < n;i++){
        double x, y;
        scanf("%lf%lf", &x, &y);
        P.add(Point(x, y));
    }
    polygon wal;
    P.Graham(wal);
    printf("%d\n",(int)(wal.getcircumference()+2*pi*d+0.5));
}

POJ 2007 Scrambled Polygon

大意:

讲了一堆概念…极角排序即可

思路:

模板题

#include <iostream>
#include <string.h>
#include <stdio.h>
#include <vector>
#include <map>
#include <queue>
#include <algorithm>
#include <math.h>
#include <cstdio>
#include <set>

using namespace std;

const int N = 20 + 5;
typedef long long LL;
int t, n;
double dis[100][100];
// 计算几何模板
const double eps = 1e-8;
const double inf = 1e20;
const double pi = acos(-1.0);
const int maxp = 1010;
// 和0做比较
int sgn(double x) {
    if (fabs(x) < eps) return 0;  // =0
    if (x < 0)
        return -1;  // < 0
    else
        return 1;  // > 0
}
// 计算x的平方
inline double sqr(double x) { return x * x; }

struct Point {
    double x, y;
    int index;
    Point() {}
    Point(double _x, double _y) {
        x = _x;
        y = _y;
    }
    void input() { scanf("%lf%lf", &x, &y); }
    void output() { printf("%.2f %.2f\n", x, y); }
    bool operator==(Point b) const {
        return sgn(x - b.x) == 0 && sgn(y - b.y) == 0;
    }
    bool operator<(Point b) const {
        return sgn(x - b.x) == 0 ? sgn(y - b.y) < 0 : x < b.x;
    }
    Point operator-(const Point &b) const { return Point(x - b.x, y - b.y); }
    Point operator+(const Point &b) const { return Point(x + b.x, y + b.y); }
    //叉积
    double operator^(const Point &b) const { return x * b.y - y * b.x; }
    //点积
    double operator*(const Point &b) const { return x * b.x + y * b.y; }
    //返回两点的距离
    double dist(Point p) { return hypot(x - p.x, y - p.y); }
     // 极角排序
    

};

struct Line {
    Point s, e;
    Line() {}
    // 两点确定一条线段
    Line(Point _s, Point _e) {
        s = _s;
        e = _e;
    }
    //返回点和直线(方向向量)关系
    // 1  在左侧; 2  在右侧; 3  在直线上
    int relation(Point p) {
        int c = sgn((p - s) ^ (e - s));
        if (c < 0)
            return 1;
        else if (c > 0)
            return 2;
        else
            return 3;
    }
    //两线段相交判断:规范相交:交点不在端点
    // 2 规范相交;1 非规范相交;0 不相交
     int segcrossseg(Line v) {
        int d1 = sgn((e - s) ^ (v.s - s));
        int d2 = sgn((e - s) ^ (v.e - s));
        int d3 = sgn((v.e - v.s) ^ (s - v.s));
        int d4 = sgn((v.e - v.s) ^ (e - v.s));
        if ((d1 ^ d2) == -2 && (d3 ^ d4) == -2) return 2;
        return (d1 == 0 && sgn((v.s - s) * (v.s - e)) <= 0) ||
               (d2 == 0 && sgn((v.e - s) * (v.e - e)) <= 0) ||
               (d3 == 0 && sgn((s - v.s) * (s - v.e)) <= 0) ||
               (d4 == 0 && sgn((e - v.s) * (e - v.e)) <= 0);
    }
    bool parallel(Line v) { return sgn((e - s) ^ (v.e - v.s)) == 0; }
    //求两直线的交点
    //要保证两直线不平行或重合
    Point crosspoint(Line v) {
        double a1 = (v.e - v.s) ^ (s - v.s);
        double a2 = (v.e - v.s) ^ (e - v.s);
        return Point((s.x * a2 - e.x * a1) / (a2 - a1),
                     (s.y * a2 - e.y * a1) / (a2 - a1));
    }
    double length() { return s.dist(e); }
    //点到直线的距离
    double dispointtoline(Point p) {
        return fabs((p - s) ^ (e - s)) / length();
    }
    //点到线段的距离
    double dispointtoseg(Point p) {
        if (sgn((p - s) * (e - s)) < 0 || sgn((p - e) * (s - e)) < 0)
            return min(p.dist(s), p.dist(e));
        return dispointtoline(p);
    }
    //直线和线段相交判断
    //-*this line   -v seg
    // 2 规范相交
    // 1 非规范相交
    // 0 不相交
    int linecrossseg(Line v) {
        int d1 = sgn((e - s) ^ (v.s - s));
        int d2 = sgn((e - s) ^ (v.e - s));
        if ((d1 ^ d2) == -2) return 2;
        return (d1 == 0 || d2 == 0);
    }
};

struct polygon {
    int n;
    Point p[maxp];
    Line l[maxp];
    // 输入多边形
    void input(int _n) {
        n = _n;
        for (int i = 0; i < n; i++) p[i].input();
    }
    // 加入一个点
    void add(Point q) { p[n++] = q; }
    // 得到多边形所有边的线段
    void getline() {
        for (int i = 0; i < n; i++) {
            l[i] = Line(p[i], p[(i + 1) % n]);
        }
    }
    // 极角排序
    struct cmp {
        Point p;
        cmp(const Point &p0) { p = p0; }
        bool operator()(const Point &aa, const Point &bb) {
            Point a = aa, b = bb;
            int d = sgn((a - p) ^ (b - p));
            if (d == 0) {
                return sgn(a.dist(p) - b.dist(p)) < 0;
            }
            return d > 0;
        }
    };
    // 进行极角排序
    // 首先需要找到最左下角的点
    // 需要重载号好Point的 < 操作符(min函数要用)
    void norm() {
        Point mi = Point(0, 0);
        sort(p, p + n, cmp(mi));
    }
    
};
double d;
polygon P;
int main(){
    double x, y;
    while(scanf("%lf%lf", &x, &y)!=EOF){
        P.add(Point(x, y));
    }
    P.norm();
    for (int i = 0; i < P.n;i++){
        printf("(%.0f,%.0f)\n", P.p[i].x, P.p[i].y);
    }
}

POJ 1873 The Fortified Forest

大意:

给出n ( n < = 15 ) (n<=15) (n<=15)颗树,每颗树都有自己的价值和木材值,现在需要砍掉一些树用他们的木材值做围栏围住其他的树,问能保留最大价值的方案是什么,如果价值相同,则选择砍树颗数最少的

思路:

因为n很小,所以可以想到二进制枚举,然后计算没被砍的树的凸包即可

#include <math.h>
#include <stdio.h>
#include <string.h>

#include <algorithm>
#include <cstdio>
#include <iostream>
#include <map>
#include <queue>
#include <set>
#include <vector>

using namespace std;

const int N = 20 + 5;
typedef long long LL;
double dis[100][100];
// 计算几何模板
const double eps = 1e-8;
const double inf = 1e20;
const double pi = acos(-1.0);
const int maxp = 20;
// 和0做比较
int sgn(double x) {
  if (fabs(x) < eps) return 0;  // =0
  if (x < 0)
    return -1;  // < 0
  else
    return 1;  // > 0
}
// 计算x的平方
inline double sqr(double x) { return x * x; }

struct Point {
  double x, y;
  int index;
  Point() {}
  Point(double _x, double _y) {
    x = _x;
    y = _y;
  }
  void input() { scanf("%lf%lf", &x, &y); }
  void output() { printf("%.2f %.2f\n", x, y); }
  bool operator==(Point b) const {
    return sgn(x - b.x) == 0 && sgn(y - b.y) == 0;
  }
  bool operator<(Point b) const {
    return sgn(x - b.x) == 0 ? sgn(y - b.y) < 0 : x < b.x;
  }
  Point operator-(const Point &b) const { return Point(x - b.x, y - b.y); }
  Point operator+(const Point &b) const { return Point(x + b.x, y + b.y); }
  //叉积
  double operator^(const Point &b) const { return x * b.y - y * b.x; }
  //点积
  double operator*(const Point &b) const { return x * b.x + y * b.y; }
  //返回两点的距离
  double dist(Point p) {
    return sqrt((x - p.x) * (x - p.x) + (y - p.y) * (y - p.y));
  }

  // 极角排序
};
struct polygon {
  int n;
  Point p[maxp];
  // 输入多边形
  void input(int _n) {
    n = _n;
    for (int i = 0; i < n; i++) p[i].input();
  }
  // 加入一个点
  void add(Point q) { p[n++] = q; }
  // 得到多边形所有边的线段

  // 极角排序
  struct cmp {
    Point p;
    cmp(const Point &p0) { p = p0; }
    bool operator()(const Point &aa, const Point &bb) {
      Point a = aa, b = bb;
      int d = sgn((a - p) ^ (b - p));
      if (d == 0) {
        return sgn(a.dist(p) - b.dist(p)) < 0;
      }
      return d > 0;
    }
  };
  // 进行极角排序
  // 首先需要找到最左下角的点
  // 需要重载号好Point的 < 操作符(min函数要用)
  void norm() {
    Point mi = p[0];
    for (int i = 1; i < n; i++) mi = min(mi, p[i]);  // min函数用Point的<重载
    sort(p, p + n, cmp(mi));
  }
  void Graham(polygon &convex) {
    norm();
    int &top = convex.n;
    top = 0;
    if (n == 1) {
      top = 1;
      convex.p[0] = p[0];
      return;
    }
    if (n == 2) {
      top = 2;
      convex.p[0] = p[0];
      convex.p[1] = p[1];
      if (convex.p[0] == convex.p[1]) top--;
      return;
    }
    convex.p[0] = p[0];
    convex.p[1] = p[1];
    top = 2;
    for (int i = 2; i < n; i++) {
      while (top > 1 && sgn((convex.p[top - 1] - convex.p[top - 2]) ^
                            (p[i] - convex.p[top - 2])) <= 0)
        top--;
      convex.p[top++] = p[i];
    }
    if (convex.n == 2 && (convex.p[0] == convex.p[1])) convex.n--;  //特判
  }

  // 得到多边形的周长
  double getcircumference() {
    double sum = 0;
    for (int i = 0; i < n; i++) {
      sum += p[i].dist(p[(i + 1) % n]);
    }
    return sum;
  }
};

double v[20], l[20];
polygon P,temp,t;
int main() {
  double x, y;
  int k = 0, n;
  while (scanf("%d", &n) != EOF && n != 0) {
    k++;
    
    P.n = 0;
    for (int i = 0; i < n; i++) {
      scanf("%lf%lf%lf%lf", &x, &y, &v[i], &l[i]);
      P.add(Point(x, y));
    }
    int MN = 1 << n;
    double maxvul = 0.0, extra = 0;
    int res[20], cnt = 0;
    for (int i = 0; i < MN; i++) {
      
      temp.n = 0;
      double wood = 0, vul = 0;
      int tempcnt = 0;
      int havecnt = 0;
      for (int j = 0; j < n; j++) {
        if (i & (1 << j)) {
          temp.add(P.p[j]);
          vul += v[j];
        } else {
          wood += l[j];
          tempcnt++;
        }
      }
      t.n = 0;
      temp.Graham(t);
      double need = t.getcircumference();

      if (wood >= need) {
        if (maxvul < vul || (maxvul == vul && cnt > tempcnt)) {
          maxvul = vul;
          cnt = 0;
          for (int j = 0; j < n; j++) {
            if (!(i & (1 << j))) {
              res[cnt++] = j;
            }
          }
          extra = wood - need;
        }
      }
    }

    if (k != 1) {
      printf("\n");
    }
    printf("Forest %d\n", k);
    printf("Cut these trees:");
    for (int i = 0; i < cnt; i++) {
      printf(" %d", res[i] + 1);
    }
    printf("\nExtra wood: %.2lf\n", extra);
  }
}

POJ 1228 Grandpa’s Estate

大意:

原本有一个凸包,现在其中的一部分点已经丢失了,现在给你剩余的点,问根据这些点能否确定原本的凸包形状

思路:

判断是否是稳定凸包即可,即凸包上每个边都有至少三个点。记得特判所有的点共线的情况。

#include <math.h>
#include <stdio.h>
#include <string.h>

#include <algorithm>
#include <cstdio>
#include <iostream>
#include <map>
#include <queue>
#include <set>
#include <vector>

using namespace std;

const int N = 20 + 5;
typedef long long LL;
double dis[100][100];
// 计算几何模板
const double eps = 1e-8;
const double inf = 1e20;
const double pi = acos(-1.0);
const int maxp = 1010;
// 和0做比较
int sgn(double x) {
    if (fabs(x) < eps) return 0;  // =0
    if (x < 0)
        return -1;  // < 0
    else
        return 1;  // > 0
}
// 计算x的平方
inline double sqr(double x) { return x * x; }

struct Point {
    double x, y;
    int index;
    Point() {}
    Point(double _x, double _y) {
        x = _x;
        y = _y;
    }
    void input() { scanf("%lf%lf", &x, &y); }
    void output() { printf("%.2f %.2f\n", x, y); }
    bool operator==(Point b) const {
        return sgn(x - b.x) == 0 && sgn(y - b.y) == 0;
    }
    bool operator<(Point b) const {
        return sgn(x - b.x) == 0 ? sgn(y - b.y) < 0 : x < b.x;
    }
    Point operator-(const Point &b) const { return Point(x - b.x, y - b.y); }
    Point operator+(const Point &b) const { return Point(x + b.x, y + b.y); }
    //叉积
    double operator^(const Point &b) const { return x * b.y - y * b.x; }
    //点积
    double operator*(const Point &b) const { return x * b.x + y * b.y; }
    //返回两点的距离
    double dist(Point p) {
        return sqrt((x - p.x) * (x - p.x) + (y - p.y) * (y - p.y));
    }

    // 极角排序
};

struct Line {
    Point s, e;
    Line() {}
    // 两点确定一条线段
    Line(Point _s, Point _e) {
        s = _s;
        e = _e;
    }
    //返回点和直线(方向向量)关系
    // 1  在左侧; 2  在右侧; 3  在直线上
    int relation(Point p) {
        int c = sgn((p - s) ^ (e - s));
        if (c < 0)
            return 1;
        else if (c > 0)
            return 2;
        else
            return 3;
    }
    //两线段相交判断:规范相交:交点不在端点
    // 2 规范相交;1 非规范相交;0 不相交
    int segcrossseg(Line v) {
        int d1 = sgn((e - s) ^ (v.s - s));
        int d2 = sgn((e - s) ^ (v.e - s));
        int d3 = sgn((v.e - v.s) ^ (s - v.s));
        int d4 = sgn((v.e - v.s) ^ (e - v.s));
        if ((d1 ^ d2) == -2 && (d3 ^ d4) == -2) return 2;
        return (d1 == 0 && sgn((v.s - s) * (v.s - e)) <= 0) ||
               (d2 == 0 && sgn((v.e - s) * (v.e - e)) <= 0) ||
               (d3 == 0 && sgn((s - v.s) * (s - v.e)) <= 0) ||
               (d4 == 0 && sgn((e - v.s) * (e - v.e)) <= 0);
    }
    bool parallel(Line v) { return sgn((e - s) ^ (v.e - v.s)) == 0; }
    //求两直线的交点
    //要保证两直线不平行或重合
    Point crosspoint(Line v) {
        double a1 = (v.e - v.s) ^ (s - v.s);
        double a2 = (v.e - v.s) ^ (e - v.s);
        return Point((s.x * a2 - e.x * a1) / (a2 - a1),
                     (s.y * a2 - e.y * a1) / (a2 - a1));
    }
    double length() { return s.dist(e); }
    //点到直线的距离
    double dispointtoline(Point p) {
        return fabs((p - s) ^ (e - s)) / length();
    }
    //点到线段的距离
    double dispointtoseg(Point p) {
        if (sgn((p - s) * (e - s)) < 0 || sgn((p - e) * (s - e)) < 0)
            return min(p.dist(s), p.dist(e));
        return dispointtoline(p);
    }
    //直线和线段相交判断
    //-*this line   -v seg
    // 2 规范相交
    // 1 非规范相交
    // 0 不相交
    int linecrossseg(Line v) {
        int d1 = sgn((e - s) ^ (v.s - s));
        int d2 = sgn((e - s) ^ (v.e - s));
        if ((d1 ^ d2) == -2) return 2;
        return (d1 == 0 || d2 == 0);
    }
};

struct polygon {
    int n;
    Point p[maxp];
    // 输入多边形
    void input(int _n) {
        n = _n;
        for (int i = 0; i < n; i++) p[i].input();
    }
    // 加入一个点
    void add(Point q) { p[n++] = q; }
    // 得到多边形所有边的线段

    // 极角排序
    struct cmp {
        Point p;
        cmp(const Point &p0) { p = p0; }
        bool operator()(const Point &aa, const Point &bb) {
            Point a = aa, b = bb;
            int d = sgn((a - p) ^ (b - p));
            if (d == 0) {
                return sgn(a.dist(p) - b.dist(p)) < 0;
            }
            return d > 0;
        }
    };
    // 进行极角排序
    // 首先需要找到最左下角的点
    // 需要重载号好Point的 < 操作符(min函数要用)
    void norm() {
        Point mi = p[0];
        for (int i = 1; i < n; i++)
            mi = min(mi, p[i]);  // min函数用Point的<重载
        sort(p, p + n, cmp(mi));
    }
    void Graham(polygon &convex) {
        norm();
        int &top = convex.n;
        top = 0;
        if (n == 1) {
            top = 1;
            convex.p[0] = p[0];
            return;
        }
        if (n == 2) {
            top = 2;
            convex.p[0] = p[0];
            convex.p[1] = p[1];
            if (convex.p[0] == convex.p[1]) top--;
            return;
        }
        convex.p[0] = p[0];
        convex.p[1] = p[1];
        top = 2;
        for (int i = 2; i < n; i++) {
            while (top > 1 && sgn((convex.p[top - 1] - convex.p[top - 2]) ^
                                  (p[i] - convex.p[top - 2])) <= 0)
                top--;
            convex.p[top++] = p[i];
        }
        if (convex.n == 2 && (convex.p[0] == convex.p[1])) convex.n--;  //特判
    }

    // 得到多边形的周长
    double getcircumference() {
        double sum = 0;
        for (int i = 0; i < n; i++) {
            sum += p[i].dist(p[(i + 1) % n]);
        }
        return sum;
    }
};
int t, n;
double v[20], l[20];
polygon P, tb;
int main() {
    scanf("%d", &t);
    while (t--) {
        P.n = 0;
        scanf("%d", &n);
        for (int i = 0; i < n; i++) {
            double x, y;
            scanf("%lf%lf", &x, &y);
            P.add(Point(x, y));
        }
        tb.n = 0;
        P.Graham(tb);
        if (tb.n <= 2) {
            cout << "NO" << endl;
            continue;
        }
        int flag = 1;
        for (int i = 0; i < tb.n; i++) {
            Line now = Line(tb.p[i], tb.p[(i + 1) % tb.n]);
            int num = 0;
            for (int j = 0; j < P.n; j++) {
                if (now.relation(P.p[j]) == 3) {
                    num++;
                }
            }
            if (num < 3) {
                flag = 0;
            }
        }
        if (flag)
            cout << "YES" << endl;
        else
            cout << "NO" << endl;
    }
}

POJ 3348 Cows

大意:

每个奶牛至少需要50平方米的土地,给出n个树,问从这些树里面选出牧场的端点,最多能养多少奶牛

思路:

凸包求面积,除以50即可,模板题,求面积利用原点到顶点组成的三角形叉积和即可。

#include <math.h>
#include <stdio.h>
#include <string.h>

#include <algorithm>
#include <cstdio>
#include <iostream>
#include <map>
#include <queue>
#include <set>
#include <vector>

using namespace std;

const int N = 20 + 5;
typedef long long LL;
double dis[100][100];
// 计算几何模板
const double eps = 1e-8;
const double inf = 1e20;
const double pi = acos(-1.0);
const int maxp = 10000 + 5;
// 和0做比较
int sgn(double x) {
    if (fabs(x) < eps) return 0;  // =0
    if (x < 0)
        return -1;  // < 0
    else
        return 1;  // > 0
}
// 计算x的平方
inline double sqr(double x) { return x * x; }

struct Point {
    double x, y;
    int index;
    Point() {}
    Point(double _x, double _y) {
        x = _x;
        y = _y;
    }
    void input() { scanf("%lf%lf", &x, &y); }
    void output() { printf("%.2f %.2f\n", x, y); }
    bool operator==(Point b) const {
        return sgn(x - b.x) == 0 && sgn(y - b.y) == 0;
    }
    bool operator<(Point b) const {
        return sgn(x - b.x) == 0 ? sgn(y - b.y) < 0 : x < b.x;
    }
    Point operator-(const Point &b) const { return Point(x - b.x, y - b.y); }
    Point operator+(const Point &b) const { return Point(x + b.x, y + b.y); }
    //叉积
    double operator^(const Point &b) const { return x * b.y - y * b.x; }
    //点积
    double operator*(const Point &b) const { return x * b.x + y * b.y; }
    //返回两点的距离
    double dist(Point p) {
        return sqrt((x - p.x) * (x - p.x) + (y - p.y) * (y - p.y));
    }

    // 极角排序
};

struct Line {
    Point s, e;
    Line() {}
    // 两点确定一条线段
    Line(Point _s, Point _e) {
        s = _s;
        e = _e;
    }
    //返回点和直线(方向向量)关系
    // 1  在左侧; 2  在右侧; 3  在直线上
    int relation(Point p) {
        int c = sgn((p - s) ^ (e - s));
        if (c < 0)
            return 1;
        else if (c > 0)
            return 2;
        else
            return 3;
    }
    //两线段相交判断:规范相交:交点不在端点
    // 2 规范相交;1 非规范相交;0 不相交
    int segcrossseg(Line v) {
        int d1 = sgn((e - s) ^ (v.s - s));
        int d2 = sgn((e - s) ^ (v.e - s));
        int d3 = sgn((v.e - v.s) ^ (s - v.s));
        int d4 = sgn((v.e - v.s) ^ (e - v.s));
        if ((d1 ^ d2) == -2 && (d3 ^ d4) == -2) return 2;
        return (d1 == 0 && sgn((v.s - s) * (v.s - e)) <= 0) ||
               (d2 == 0 && sgn((v.e - s) * (v.e - e)) <= 0) ||
               (d3 == 0 && sgn((s - v.s) * (s - v.e)) <= 0) ||
               (d4 == 0 && sgn((e - v.s) * (e - v.e)) <= 0);
    }
    bool parallel(Line v) { return sgn((e - s) ^ (v.e - v.s)) == 0; }
    //求两直线的交点
    //要保证两直线不平行或重合
    Point crosspoint(Line v) {
        double a1 = (v.e - v.s) ^ (s - v.s);
        double a2 = (v.e - v.s) ^ (e - v.s);
        return Point((s.x * a2 - e.x * a1) / (a2 - a1),
                     (s.y * a2 - e.y * a1) / (a2 - a1));
    }
    double length() { return s.dist(e); }
    //点到直线的距离
    double dispointtoline(Point p) {
        return fabs((p - s) ^ (e - s)) / length();
    }
    //点到线段的距离
    double dispointtoseg(Point p) {
        if (sgn((p - s) * (e - s)) < 0 || sgn((p - e) * (s - e)) < 0)
            return min(p.dist(s), p.dist(e));
        return dispointtoline(p);
    }
    //直线和线段相交判断
    //-*this line   -v seg
    // 2 规范相交
    // 1 非规范相交
    // 0 不相交
    int linecrossseg(Line v) {
        int d1 = sgn((e - s) ^ (v.s - s));
        int d2 = sgn((e - s) ^ (v.e - s));
        if ((d1 ^ d2) == -2) return 2;
        return (d1 == 0 || d2 == 0);
    }
};

struct polygon {
    int n;
    Point p[maxp];
    // 输入多边形
    void input(int _n) {
        n = _n;
        for (int i = 0; i < n; i++) p[i].input();
    }
    // 加入一个点
    void add(Point q) { p[n++] = q; }
    // 得到多边形所有边的线段

    // 极角排序
    struct cmp {
        Point p;
        cmp(const Point &p0) { p = p0; }
        bool operator()(const Point &aa, const Point &bb) {
            Point a = aa, b = bb;
            int d = sgn((a - p) ^ (b - p));
            if (d == 0) {
                return sgn(a.dist(p) - b.dist(p)) < 0;
            }
            return d > 0;
        }
    };
    // 进行极角排序
    // 首先需要找到最左下角的点
    // 需要重载号好Point的 < 操作符(min函数要用)
    void norm() {
        Point mi = p[0];
        for (int i = 1; i < n; i++)
            mi = min(mi, p[i]);  // min函数用Point的<重载
        sort(p, p + n, cmp(mi));
    }
    void Graham(polygon &convex) {
        norm();
        int &top = convex.n;
        top = 0;
        if (n == 1) {
            top = 1;
            convex.p[0] = p[0];
            return;
        }
        if (n == 2) {
            top = 2;
            convex.p[0] = p[0];
            convex.p[1] = p[1];
            if (convex.p[0] == convex.p[1]) top--;
            return;
        }
        convex.p[0] = p[0];
        convex.p[1] = p[1];
        top = 2;
        for (int i = 2; i < n; i++) {
            while (top > 1 && sgn((convex.p[top - 1] - convex.p[top - 2]) ^
                                  (p[i] - convex.p[top - 2])) <= 0)
                top--;
            convex.p[top++] = p[i];
        }
        if (convex.n == 2 && (convex.p[0] == convex.p[1])) convex.n--;  //特判
    }

    // 得到多边形的周长
    double getcircumference() {
        double sum = 0;
        for (int i = 0; i < n; i++) {
            sum += p[i].dist(p[(i + 1) % n]);
        }
        return sum;
    }
    double getarea() {
        double sum = 0;
        for (int i = 0; i < n; i++) {
            sum += (p[i] ^ p[(i + 1) % n]);
        }
        return fabs(sum) / 2;
    }
};
int t, n;
double v[20], l[20];
polygon P, tb;
int main() {
    scanf("%d", &n);
    for (int i = 0; i < n; i++) {
        double x, y;
        scanf("%lf%lf", &x, &y);
        P.add(Point(x, y));
    }
    P.Graham(tb);
    double area=tb.getarea();
    printf("%d\n", int(area / 50));
}

标签:return,Point,int,double,sgn,之凸包,计算,几何,const
来源: https://blog.csdn.net/m0_49959202/article/details/118855282