数据指标体系建设方法
作者:互联网
01数据数据是指未经过处理的原始记录。数据的本质是利用数学观察、记录、理解世界;数据分析的过程就是人类从定性到定量、模糊到精准过程。大家都喜欢看数据,而不是通过一堆的文字、现象进行决策判断。
02指标
指标=数据+业务场景,能够指导业务制定下一步行动方案。
例如:【体重】是一个数据,120KG不代表胖,60KG也不代表瘦,这个数字的或大或小并不能从说明什么问题,因为还有身高的因素。而【体脂率】是一个衡量人体内脂肪含量的多少的指标,对男性而言3-4%左右的体脂是必须脂肪,对女性而言10-12%的脂肪是必须脂肪,低于这个标准就会影响健康。另外,男性体脂高于25%、女性高于35%则属于肥胖,不但难看还会影响健康。因此【体脂率】是一个可以指导人们下一步行动的“指标”,而【体重】只是一个数据。一个好的指标的应该能够解决以下5W的问题:
1、使用场景(who、when、where)
解决指标的维度问题,通过定义维度可以明确指标所能支持的分析场景,例如【体脂率】可以支持性别、年龄段、地区等维度,那对应的可以支持对不同性别、年龄段、地区人群的分析。2、指标定义(what)
解决指标的计算口径问题,大多数情况下需要解决的是同名不同义、同义不同名的问题,如下图的销售额、上架数量两个指标所示。3、指标用途(why)
解决指标的逻辑问题,明确指标与指标之间的逻辑关系,如:销售利润=销售额-采购成本-头程税费-退税差额,毛利润=销售利润-呆滞计提-资金占用利息。03指标体系明确了指标应该解决的问题,接下来就是如何把指标构建成为一套指标体系。这里给出两套比较常用的指标体系建设方法论,一个是海盗指标法,另一个是第一关键指标法(现在也叫北极星指标,名称不同但是理念是一致的)。
海盗指标法(AARRR):
2007 年,500 Startups 创业孵化器的创始合伙人 Dave McClure 针对创业公司应该关注哪些指标,提出了一套模型—— PirateMetrics,即海盗指标法,思想如下。第一关键指标法:
04总结
不同行业在不同发展阶段,最终绘制出来的“指标树”可能有很大的差异。不同的指标体系方法论适用场景不同,建议结合不同的方法论进行指标梳理,但不管是第一关键指标法还是海盗指标法,重点都在于如何让指标为公司经营提供决策依据。
标签:指标,第一,指标体系,建设,销售额,关键,模块,方法 来源: https://blog.51cto.com/u_15259710/2917985