Linux 内核中断体系结构 (1)
作者:互联网
@
目录0. 目的:
1.硬件的中断响应 ---> 内核驱动中的中断
2.系统调用的函数响应(sys call) --->系统调用
3.自定义中断 --->软件的软中断模式
4.信号中断 (kill -signalnum)
5.系统的异常和错误 ---> 系统异常处理获取 了解系统异常的作用
1. Linux的中断机制
1.1 分类:
硬件中断 软件中断
硬中断:由电脑主机的8259A类似的硬件中断控制芯片发出的中断
AR中断控制器发出的中断
软中断:异常第一类:CPU自行保留的中断
系统调用异常
1.2 代码结构:
asm.s -> trap.c
system_call.s -> fork.c signal.c exit.c sys.c
2. 中断的工作流程:
2.1: 回忆
- 做CPU工作模式的转化
- 进行寄存器的拷贝与压栈
- 设置中断异常向量表
- 保存正常运行的函数返回值
- 跳转到对应的中断服务函数上运行
- 进行模式的复原以及寄存器的复原
- 跳转回正常工作的函数地址继续运行
2.2 Linux 中中断的工作流程
-
将所有寄存器的值入栈(切换CPU模式)
SS EFLAGS ESP CS EIP -
将异常码入栈(中断号:哪个设备产生的中断,如果发生错误能找到谁发出的中断处理)
他这里异常码是中断号,中断处理过程中的c代码要靠这个号找到中断处理函数 -
将当前的函数返回值进行入栈(为了在中断执行后能够找到在哪里中断,能够复原)
-
调出 对应的中断服务函数
-
寄存器复原
如图所示:
中断前的处理过程,中断的回复过程 中断的执行过程
硬件中断的处理过程 asm.s trap.c
软件及系统调用的处理过程 system call.s fork.csignal .cexit.c sys.c
3. 中断的代码实现过程
中断前的处理过程,中断的回复过程 中断的执行过程
硬件中断的处理过程 asm.s trap.c
EIP寄存器,用来存储CPU要读取指令的地址,CPU通过EIP寄存器读取即将要执行的指令。每次CPU执行完相应的汇编指令之后,EIP寄存器的值就会增加。
老师说的其实不准确,实际上是eax和(esp指向的内存)两个东西交换了,esp存的是内存地址,而加括号就是取这个地址对应的内存值,并不是操作的esp
CS(code segment)代码段地址寄存器,存放代码段的起始地址
DS(data segment)数据段地址寄存器,存放数据段的起始地址
SS(stack segment)堆栈段地址寄存器,存放堆栈段的起始地址(每个进程都有自己的栈空间)
ES(extra segment)附加段地址寄存器,存放附加段的起始地址
/*
* linux/kernel/asm.s
*
* (C) 1991 Linus Torvalds
*/
/*
* asm.s contains the low-level code for most hardware faults.
* page_exception is handled by the mm, so that isn't here. This
* file also handles (hopefully) fpu-exceptions due to TS-bit, as
* the fpu must be properly saved/resored. This hasn't been tested.
*/
.globl _divide_error,_debug,_nmi,_int3,_overflow,_bounds,_invalid_op
.globl _double_fault,_coprocessor_segment_overrun
.globl _invalid_TSS,_segment_not_present,_stack_segment
.globl _general_protection,_coprocessor_error,_irq13,_reserved
_divide_error:
pushl $_do_divide_error//把一个c语言函数入栈
no_error_code://无错误码中断
xchgl %eax,(%esp) // 此时%esp指向的地址里面的值是$_do_divide_error 的函数地址
pushl %ebx
pushl %ecx
pushl %edx
pushl %edi
pushl %esi
pushl %ebp
push %ds
push %es
push %fs
pushl $0 # "error code"
lea 44(%esp),%edx
pushl %edx
movl $0x10,%edx
mov %dx,%ds
mov %dx,%es
mov %dx,%fs
call *%eax
addl $8,%esp
pop %fs
pop %es
pop %ds
popl %ebp
popl %esi
popl %edi
popl %edx
popl %ecx
popl %ebx
popl %eax
iret
_debug://这是一个中断
pushl $_do_int3 # _do_debug
jmp no_error_code//跳转
_nmi:
pushl $_do_nmi
jmp no_error_code
_int3:
pushl $_do_int3
jmp no_error_code
_overflow:
pushl $_do_overflow
jmp no_error_code
_bounds:
pushl $_do_bounds
jmp no_error_code
_invalid_op:
pushl $_do_invalid_op
jmp no_error_code
_coprocessor_segment_overrun:
pushl $_do_coprocessor_segment_overrun
jmp no_error_code
_reserved:
pushl $_do_reserved
jmp no_error_code
_irq13:
pushl %eax
xorb %al,%al
outb %al,$0xF0
movb $0x20,%al
outb %al,$0x20
jmp 1f
1: jmp 1f
1: outb %al,$0xA0
popl %eax
jmp _coprocessor_error
_double_fault:
pushl $_do_double_fault
error_code://有中断码中断
xchgl %eax,4(%esp) # error code <-> %eax
xchgl %ebx,(%esp) # &function <-> %ebx
pushl %ecx
pushl %edx
pushl %edi
pushl %esi
pushl %ebp
push %ds
push %es
push %fs
pushl %eax # error code
lea 44(%esp),%eax # offset
pushl %eax
movl $0x10,%eax
mov %ax,%ds
mov %ax,%es
mov %ax,%fs
call *%ebx
addl $8,%esp
pop %fs
pop %es
pop %ds
popl %ebp
popl %esi
popl %edi
popl %edx
popl %ecx
popl %ebx
popl %eax
iret
_invalid_TSS:
pushl $_do_invalid_TSS
jmp error_code
_segment_not_present:
pushl $_do_segment_not_present
jmp error_code
_stack_segment:
pushl $_do_stack_segment
jmp error_code
_general_protection:
pushl $_do_general_protection
jmp error_code
trap.c
/*
* linux/kernel/traps.c
*
* (C) 1991 Linus Torvalds
*/
/*
* 'Traps.c' handles hardware traps and faults after we have saved some
* state in 'asm.s'. Currently mostly a debugging-aid, will be extended
* to mainly kill the offending process (probably by giving it a signal,
* but possibly by killing it outright if necessary).
*/
#include <string.h>
#include <linux/head.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <asm/system.h>
#include <asm/segment.h>
#include <asm/io.h>
#define get_seg_byte(seg,addr) ({ \
register char __res; \
__asm__("push %%fs;mov %%ax,%%fs;movb %%fs:%2,%%al;pop %%fs" \
:"=a" (__res):"0" (seg),"m" (*(addr))); \
__res;})
#define get_seg_long(seg,addr) ({ \
register unsigned long __res; \
__asm__("push %%fs;mov %%ax,%%fs;movl %%fs:%2,%%eax;pop %%fs" \
:"=a" (__res):"0" (seg),"m" (*(addr))); \
__res;})
#define _fs() ({ \
register unsigned short __res; \
__asm__("mov %%fs,%%ax":"=a" (__res):); \
__res;})
int do_exit(long code);
void page_exception(void);
void divide_error(void);
void debug(void);
void nmi(void);
void int3(void);
void overflow(void);
void bounds(void);
void invalid_op(void);
void device_not_available(void);
void double_fault(void);
void coprocessor_segment_overrun(void);
void invalid_TSS(void);
void segment_not_present(void);
void stack_segment(void);
void general_protection(void);
void page_fault(void);
void coprocessor_error(void);
void reserved(void);
void parallel_interrupt(void);
void irq13(void);
//esp_ptr 段指针
//nr 出错的段号
//总的来说die函数就是用来打印错误信息
static void die(char * str,long esp_ptr,long nr)
{
long * esp = (long *) esp_ptr;
int i;
//以下基本在打印栈信息
printk("%s: %04x\n\r",str,nr&0xffff);
printk("EIP:\t%04x:%p\nEFLAGS:\t%p\nESP:\t%04x:%p\n",
esp[1],esp[0],esp[2],esp[4],esp[3]);
printk("fs: %04x\n",_fs());
printk("base: %p, limit: %p\n",get_base(current->ldt[1]),get_limit(0x17));
if (esp[4] == 0x17) {
printk("Stack: ");
for (i=0;i<4;i++)
printk("%p ",get_seg_long(0x17,i+(long *)esp[3]));
printk("\n");
}
str(i);
printk("Pid: %d, process nr: %d\n\r",current->pid,0xffff & i);
for(i=0;i<10;i++)
printk("%02x ",0xff & get_seg_byte(esp[1],(i+(char *)esp[0])));
printk("\n\r");
do_exit(11);//退出中断 /* play segment exception */
}
void do_double_fault(long esp, long error_code)
{
die("double fault",esp,error_code);
}
void do_general_protection(long esp, long error_code)
{
die("general protection",esp,error_code);
}
//asm.s调用的第一个函数在这里
void do_divide_error(long esp, long error_code)
{
die("divide error",esp,error_code);
}
void do_int3(long * esp, long error_code,
long fs,long es,long ds,
long ebp,long esi,long edi,
long edx,long ecx,long ebx,long eax)
{
int tr;
__asm__("str %%ax":"=a" (tr):"0" (0));
printk("eax\t\tebx\t\tecx\t\tedx\n\r%8x\t%8x\t%8x\t%8x\n\r",
eax,ebx,ecx,edx);
printk("esi\t\tedi\t\tebp\t\tesp\n\r%8x\t%8x\t%8x\t%8x\n\r",
esi,edi,ebp,(long) esp);
printk("\n\rds\tes\tfs\ttr\n\r%4x\t%4x\t%4x\t%4x\n\r",
ds,es,fs,tr);
printk("EIP: %8x CS: %4x EFLAGS: %8x\n\r",esp[0],esp[1],esp[2]);
}
void do_nmi(long esp, long error_code)
{
die("nmi",esp,error_code);
}
void do_debug(long esp, long error_code)
{
die("debug",esp,error_code);
}
void do_overflow(long esp, long error_code)
{
die("overflow",esp,error_code);
}
void do_bounds(long esp, long error_code)
{
die("bounds",esp,error_code);
}
void do_invalid_op(long esp, long error_code)
{
die("invalid operand",esp,error_code);
}
void do_device_not_available(long esp, long error_code)
{
die("device not available",esp,error_code);
}
void do_coprocessor_segment_overrun(long esp, long error_code)
{
die("coprocessor segment overrun",esp,error_code);
}
void do_invalid_TSS(long esp,long error_code)
{
die("invalid TSS",esp,error_code);
}
void do_segment_not_present(long esp,long error_code)
{
die("segment not present",esp,error_code);
}
void do_stack_segment(long esp,long error_code)
{
die("stack segment",esp,error_code);
}
void do_coprocessor_error(long esp, long error_code)
{
if (last_task_used_math != current)
return;
die("coprocessor error",esp,error_code);
}
void do_reserved(long esp, long error_code)
{
die("reserved (15,17-47) error",esp,error_code);
}
//中断的初始化函数
//set_trap_gate 优先级较低 只能由用户程序来调用
//set_system_gate 优先级很高 能由系统和用户所有的程序调用
void trap_init(void)
{
int i;
set_trap_gate(0,÷_error);//如果被除数是0就会产生这个中断
set_trap_gate(1,&debug);//单步调试的时候调用这个中断
set_trap_gate(2,&nmi);
set_system_gate(3,&int3); /* int3-5 can be called from all */
set_system_gate(4,&overflow);
set_system_gate(5,&bounds);
set_trap_gate(6,&invalid_op);
set_trap_gate(7,&device_not_available);
set_trap_gate(8,&double_fault);
set_trap_gate(9,&coprocessor_segment_overrun);
set_trap_gate(10,&invalid_TSS);
set_trap_gate(11,&segment_not_present);
set_trap_gate(12,&stack_segment);
set_trap_gate(13,&general_protection);
set_trap_gate(14,&page_fault);
set_trap_gate(15,&reserved);
set_trap_gate(16,&coprocessor_error);
for (i=17;i<48;i++)
set_trap_gate(i,&reserved);
set_trap_gate(45,&irq13);
outb_p(inb_p(0x21)&0xfb,0x21);
outb(inb_p(0xA1)&0xdf,0xA1);
set_trap_gate(39,¶llel_interrupt);
}
标签:code,esp,中断,void,error,内核,Linux,pushl,体系结构 来源: https://www.cnblogs.com/dcj101404/p/15975128.html