数据结构与算法【Java】05---排序算法总结
作者:互联网
前言
数据 data 结构(structure)是一门 研究组织数据方式的学科,有了编程语言也就有了数据结构.学好数据结构才可以编写出更加漂亮,更加有效率的代码。
- 要学习好数据结构就要多多考虑如何将生活中遇到的问题,用程序去实现解决.
- 程序 = 数据结构 + 算法
- 数据结构是算法的基础, 换言之,想要学好算法,需要把数据结构学到位
我会用数据结构与算法【Java】这一系列的博客记录自己的学习过程,如有遗留和错误欢迎大家提出,我会第一时间改正!!!
注:数据结构与算法【Java】这一系列的博客参考于B站尚硅谷的视频,文章仅用于学习交流,
数据结构与算法【Java】05---排序算法
1、排序算法介绍
- 排序也称排序算法(SortAlgorithm),排序是将 一组数据,依指定的顺序进行排列的过程
- 有很多种不同的排序算法,每一种都有各自的优势和限制
- 下面我们会一一分析不同种的排序算法并比较他们之间的区别
2、排序的分类
-
内部排序:
指将需要处理的所有数据都加载到 内部存储器( 内存)中进行排序。
-
外部排序法:
数据量过大,无法全部加载到内存中,需要借助 外部存储( 文件等)进行排序。
3、算法的时间复杂度
3.1、度量一个程序(算法)执行时间的两种方法
- 事后统计:实际运行程序统计时间,但是容易受计算机的软硬件环境影响
- 事前统计:分析时间复杂度
3.2、时间频度
-
介绍:一个算法中的语句执行次数称为语句频度或时间频度。记为 T(n)
-
举例说明:
1、比如计算1-100所有数字之和, 我们设计两种算法:
(1)T(n)=n+1
(2)T(n)=1
2、时间频度的表示
(1)忽略常数项
结论:
2n+20 和 2n 随着n 变大,执行曲线无限接近, 20可以忽略
3n+10 和 3n 随着n 变大,执行曲线无限接近, 10可以忽略
(2)忽略低次项
结论:
2n^2+3n+10 和 2n^2 随着n 变大, 执行曲线无限接近, 可以忽略 3n+10
n^2+5n+20 和 n^2 随着n 变大,执行曲线无限接近, 可以忽略 5n+20
(3)忽略系数
结论:
随着n值变大,5n^2+7n 和 3n^2 + 2n ,执行曲线重合, 说明 这种情况下, 5和3可以忽略。
而n^3+5n 和 6n^3+4n ,执行曲线分离,说明多少次方式关键
3.3、时间复杂度
1.一般情况下, 算法中的基本操作语句的重复执行次数是问题规模 n 的某个函数,用 T(n)表示,若有某个辅
助函数 f(n),使得当 n 趋近于无穷大时,T(n) / f(n) 的极限值为不等于零的常数,则称 f(n)是 T(n)的同数量级函数。
记作 T(n)= O( f(n) ),称O( f(n) ) 为算法的渐进时间复杂度,简称时间复杂度。
- T(n) 不同,但时间复杂度可能相同。 如:T(n)=n²+7n+6 与 T(n)=3n²+2n+2 它们的 T(n) 不同,但时间复杂
度相同,都为 O(n² )。 - 计算时间复杂度的方法:
(1) 用常数 1 代替运行时间中的所有加法常数 T(n)=n²+7n+6 => T(n)=n²+7n+1
(2)修改后的运行次数函数中,只保留最高阶项 T(n)=n²+7n+1 => T(n) = n²
(3)去除最高阶项的系数 T(n) = n² => T(n) = n² => O(n²)
3.4、常见的时间复杂度
- 常数阶O(1)
- 对数阶O(log2n)
- 线性阶O(n)
- 线性对数阶O(nlog2n)
- 平方阶O(n^2)
- 立方阶O(n^3)
- k次方阶O(n^k)
- 指数阶O(2^n)
说明:
- 常见的算法时间复杂度由小到大依次为:Ο(1)<Ο(log2n)<Ο(n)<Ο(nlog2n)<Ο(n2)<Ο(n3)< Ο(nk) <Ο(2n) ,随着问题规模n的不断增大,上述时间复杂度不断增大,算法的执行效率越低
- 从图中可见,我们应该尽可能避免使用指数阶的算法
举例说明
1.常数阶O(1)
无论代码执行了多少行,只要是没有循环等复杂结构,那这个代码的时间复杂度就都是O(1)
上述代码在执行的时候,它消耗的时候并不随着某个变量的增长而增长,那么无论这类代码有多长,即使有几万几十万行,都可以用O(1)来表示它的时间复杂度
2.对数阶O(log2n)
在while循环里面,每次都将 i
乘以 2,乘完之后,i
距离 n 就越来越近了。假设循环x次之后,i
就大于 2 了,此时这个循环就退出了,也就是说 2 的 x 次方等于 n,那么 x = log2n也就是说当循环 log2n 次以后,这个代码就结束了。