数据库基本概念
作者:互联网
数据库基础概念
什么是数据库
数据库(Database)是按照数据结构来组织、存储和管理数据的仓库。
- 数据库:数据库是一些关联表的集合。
- 数据表:表是数据的矩阵。在一个数据库中的表看起来像一个简单的电子表格。
- 列:一列(数据元素) 包含了相同类型的数据, 例如邮政编码的数据。
- 行:一行(=元组,或记录)是一组相关的数据,例如一条用户订阅的数据。
- 冗余:存储两倍数据,冗余降低了性能,但提高了数据的安全性。
- 主键:主键是唯一的。一个数据表中只能包含一个主键。你可以使用主键来查询数据。
- 外键:外键用于关联两个表。
【备注】实际的互联网项目不会用外键,都是用代码来保证唯一 - 复合键:复合键(组合键)将多个列作为一个索引键,一般用于复合索引。
- 索引:使用索引可快速访问数据库表中的特定信息。索引是对数据库表中一列或多列的值进行排序的一种结构。类似于书籍的目录。
什么是事务?什么是锁?
- 事务:就是被绑定在一起作为一个逻辑工作单元的 SQL 语句分组,如果任何一个语句操作失败那么整个操作就被失败,以后操作就会回滚到操作前状态,或者是上有个节点。为了确保要么执行,要么不执行,就可以使用事务。要将有组语句作为事务考虑,就需要通过 ACID 测试,即原子性,一致性,隔离性和持久性。
- 锁:在所有的 DBMS 中,锁是实现事务的关键,锁可以保证事务的完整性和并发性。与现实生活中锁一样,它可以使某些数据的拥有者,在某段时间内不能使用某些数据或数据结构。当然锁还分级别的。
数据库事务的四个特性及含义
-
原子性:
- 一个事务包含多个操作,这些操作要么全部执行,要么全都不执行。实现事务的原子性,要支持回滚操作,在某个操作失败后,回滚到事务执行之前的状态。
-
一致性
- 一致性是指事务使得系统从一个一致的状态转换到另一个一致状态。事务的一致性决定了一个系统设计和实现的复杂度,也导致了事务的不同隔离级别。
-
隔离性
- 并发事务之间互相影响的程度,比如一个事务会不会读取到另一个未提交的事务修改的数据。
- 可能问题
- 脏读:事务A修改了一个数据,但未提交,事务B读到了事务A未提交的更新结果,如果事务A提交失败,事务B读到的就是脏数据。
- 不可重复读:在同一个事务中,对于同一份数据读取到的结果不一致。比如,事务B在事务A提交前读到的结果,和提交后读到的结果可能不同。不可重复读出现的原因就是事务并发修改记录,要避免这种情况,最简单的方法就是对要修改的记录加锁,这回导致锁竞争加剧,影响性能。另一种方法是通过MVCC可以在无锁的情况下,避免不可重复读。
- 幻读:在同一个事务中,同一个查询多次返回的结果不一致。事务A新增了一条记录,事务B在事务A提交前后各执行了一次查询操作,发现后一次比前一次多了一条记录。
- 事务的隔离级别
- Read Uncommitted:最低的隔离级别,什么都不需要做,一个事务可以读到另一个事务未提交的结果。所有的并发事务问题都会发生
- Read Committed:只有在事务提交后,其更新结果才会被其他事务看见。可以解决脏读问题。
- Repeated Read:在一个事务中,对于同一份数据的读取结果总是相同的,无论是否有其他事务对这份数据进行操作,以及这个事务是否提交。可以解决脏读、不可重复读。
- Serialization:事务串行化执行,隔离级别最高,牺牲了系统的并发性。可以解决并发事务的所有问题。
- 可能问题
- 并发事务之间互相影响的程度,比如一个事务会不会读取到另一个未提交的事务修改的数据。
-
持久性
- 事务提交后,对系统的影响是永久的。
视图
视图是一种虚拟的表,具有和物理表相同的功能。可以对视图进行增,改,查,操作,试图通常是有一个表或者多个表的行或列的子集。对视图的修改不影响基本表。它使得我们获取数据更容易,相比多表查询。
如下两种场景一般会使用到视图:
- 不希望访问者获取整个表的信息,只暴露部分字段给访问者,所以就建一个虚表,就是视图。
- 查询的数据来源于不同的表,而查询者希望以统一的方式查询,这样也可以建立一个视图,把多个表查询结果联合起来,查询者只需要直接从视图中获取数据,不必考虑数据来源于不同表所带来的差异。
注:这个视图是在数据库中创建的 而不是用代码创建的。
触发器
触发器是一中特殊的存储过程,主要是通过事件来触发而被执行的。它可以强化约束,来维护数据的完整性和一致性,可以跟踪数据库内的操作从而不允许未经许可的更新和变化。可以联级运算。如,某表上的触发器上包含对另一个表的数据操作,而该操作又会导致该表触发器被触发
如何维护数据库的完整性和一致性
- 触发器简单,但是不利于后期维护,
- 使用自写业务逻辑(原因是高并发和大数据量情况下数据库一般都是瓶颈,最难被扩充)
索引的作用?和它的优点缺点是什么?
数据库索引,是数据库管理系统中一个排序的数据结构,以协助快速查询、更新数据库表中数据。索引的实现通常使用B树及其变种B+树。
在数据之外,数据库系统还维护着满足特定查找算法的数据结构,这些数据结构以某种方式引用(指向)数据,这样就可以在这些数据结构上实现高级查找算法。这种数据结构,就是索引。
为表设置索引要付出代价的:一是增加了数据库的存储空间,二是在插入和修改数据时要花费较多的时间(因为索引也要随之变动)。
索引是建立在数据库表中的某些列的上面。在创建索引的时候,应该考虑在哪些列上可以创建索引,在哪些列上不能创建索引。一般来说,应该在这些列上创建索引:
- 在经常需要搜索的列上,可以加快搜索的速度;
- 在作为主键的列上,强制该列的唯一性和组织表中数据的排列结构;
- 在经常用在连接的列上,这些列主要是一些外键,可以加快连接的速度;
- 在经常需要根据范围进行搜索的列上创建索引,因为索引已经排序,其指定的范围是连续的;
- 在经常需要排序的列上创建索引,因为索引已经排序,这样查询可以利用索引的排序,加快排序查询时间;
- 在经常使用在WHERE子句中的列上面创建索引,加快条件的判断速度。
同样,对于有些列不应该创建索引。一般来说,不应该创建索引的的这些列具有下列特点:
- 对于那些在查询中很少使用或者参考的列不应该创建索引。这是因为,既然这些列很少使用到,因此有索引或者无索引,并不能提高查询速度。相反,由于增加了索引,反而降低了系统的维护速度和增大了空间需求。
- 对于那些只有很少数据值的列也不应该增加索引。这是因为,由于这些列的取值很少,例如人事表的性别列,在查询的结果中,结果集的数据行占了表中数据行的很大比例,即需要在表中搜索的数据行的比例很大。增加索引,并不能明显加快检索速度。
- 对于那些定义为text, image和bit数据类型的列不应该增加索引。这是因为,这些列的数据量要么相当大,要么取值很少。
- 当修改性能远远大于检索性能时,不应该创建索引。这是因为,修改性能和检索性能是互相矛盾的。当增加索引时,会提高检索性能,但是会降低修改性能。当减少索引时,会提高修改性能,降低检索性能。因此,当修改性能远远大于检索性能时,不应该创建索引。
索引区分为唯一索引、主键索引和普通索引
【备注】
- mysql中,如果要创建索引的列要尽量避免NULL:应该指定列为NOT NULL,除非你想存储NULL。在MySQL中,含有空值的列很难进行查询优化。
- 因为它们使得索引、索引的统计信息以及比较运算更加复杂。你应该用0、一个特殊的值或者一个空串代替空值
- 可空列需要更多的存储空间(见上面的e文),还需要mysql内部进行特殊处理。可空列被索引后,每条记录都需要一个额外的字节,还能导致MYisam(mysql默认引擎)中固定大小的索引变成可变大小的索引。
drop,delete与truncate的区别
- drop(丢弃数据):
drop table 表名
,直接将表都删除掉,在删除表的时候使用。 - truncate (清空数据) :
truncate table 表名
,只删除表中的数据,再插入数据的时候自增长 id 又从 1 开始,在清空表中数据的时候使用。 - delete(删除数据) :
delete from 表名 where 列名=值
,删除某一行的数据,如果不加 where 子句和truncate table 表名
作用类似。
数据库范式
- 第一范式(1NF)
在任何一个关系数据库中,第一范式(1NF)是对关系模式的基本要求,不满足第一范式(1NF)的数据库就不是关系数据库。
所谓第一范式(1NF)是指数据库表的每一列都是不可分割的基本数据项,同一列中不能有多个值,即实体中的某个属性不能有多个值或者不能有重复的属性。如果出现重复的属性,就可能需要定义一个新的实体,新的实体由重复的属性构成,新实体与原实体之间为一对多关系。在第一范式(1NF)中表的每一行只包含一个实例的信息。简而言之,第一范式就是无重复的列。 - 第二范式(2NF)
第二范式(2NF)是在第一范式(1NF)的基础上建立起来的,即满足第二范式(2NF)必须先满足第一范式(1NF)。第二范式(2NF)要求数据库表中的每个实例或行必须可以被惟一地区分。为实现区分通常需要为表加上一个列,以存储各个实例的惟一标识。这个惟一属性列被称为主关键字或主键、主码。
第二范式(2NF)要求实体的属性完全依赖于主关键字。所谓完全依赖是指不能存在仅依赖主关键字一部分的属性,如果存在,那么这个属性和主关键字的这一部分应该分离出来形成一个新的实体,新实体与原实体之间是一对多的关系。为实现区分通常需要为表加上一个列,以存储各个实例的惟一标识。简而言之,第二范式就是非主属性非部分依赖于主关键字。 - 第三范式(3NF)
满足第三范式(3NF)必须先满足第二范式(2NF)。简而言之,第三范式(3NF)要求一个数据库表中不包含已在其它表中已包含的非主关键字信息。例如,存在一个部门信息表,其中每个部门有部门编号(dept_id)、部门名称、部门简介等信息。那么在员工信息表中列出部门编号后就不能再将部门名称、部门简介等与部门有关的信息再加入员工信息表中。如果不存在部门信息表,则根据第三范式(3NF)也应该构建它,否则就会有大量的数据冗余。简而言之,第三范式就是属性不依赖于其它非主属性。(我的理解是消除冗余)
外连接
包括左向外联接、右向外联接或完整外部联接
-
左连接:left join 或 left outer join
- 左向外联接的结果集包括 LEFT OUTER 子句中指定的左表的所有行,而不仅仅是联接列所匹配的行。如果左表的某行在右表中没有匹配行,则在相关联的结果集行中右表的所有选择列表列均为空值(null)。
- 左外连接 = 内连接 + 左边表中失配的元组
-
右连接:right join 或 right outer join
- 右向外联接是左向外联接的反向联接。将返回右表的所有行。如果右表的某行在左表中没有匹配行,则将为左表返回空值。
- 右外连接 = 内连接 + 右边表中失配的元组
-
完整外部联接:full join 或 full outer join
- 完整外部联接返回左表和右表中的所有行。当某行在另一个表中没有匹配行时,则另一个表的选择列表列包含空值。如果表之间有匹配行,则整个结果集行包含基表的数据值。
- 全外连接 = 内连接 + 左边表中失配的元组 + 右边表中失配的元组。
-
不写的话默认是inner,内连接
- 内联接是用比较运算符比较要联接列的值的联接
数据库优化的思路
-
SQL语句优化
例如:应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描。应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描。
互联网项目中,尽量避免使用存储过程,尽量避免多表关联查询. -
索引优化
-
数据库结构优化
- 范式优化: 比如消除冗余(节省空间。。)
- 反范式优化:比如适当加冗余等(减少join)
- 拆分表:垂直拆分和水平拆分
标签:事务,范式,数据库,索引,表中,数据,基本概念 来源: https://www.cnblogs.com/faetbwac/p/16361888.html